1
|
Antoniazzi CTDD, Ruviaro NA, Peres DS, Rodrigues P, Viero FT, Trevisan G. Targeting TRPV4 Channels for Cancer Pain Relief. Cancers (Basel) 2024; 16:1703. [PMID: 38730655 PMCID: PMC11083562 DOI: 10.3390/cancers16091703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the unique and complex nature of cancer pain, the activation of different ion channels can be related to the initiation and maintenance of pain. The transient receptor potential vanilloid 4 (TRPV4) is a cation channel broadly expressed in sensory afferent neurons. This channel is activated by multiple stimuli to mediate pain perception associated with inflammatory and neuropathic pain. Here, we focused on summarizing the role of TRPV4 in cancer etiology and cancer-induced pain mechanisms. Many studies revealed that the administration of a TRPV4 antagonist and TRPV4 knockdown diminishes nociception in chemotherapy-induced peripheral neuropathy (CIPN). Although the evidence on TRPV4 channels' involvement in cancer pain is scarce, the expression of these receptors was reportedly enhanced in cancer-induced bone pain (CIBP), perineural, and orofacial cancer models following the inoculation of tumor cells to the bone marrow cavity, sciatic nerve, and tongue, respectively. Effective pain management is a continuous problem for patients diagnosed with cancer, and current guidelines fail to address a mechanism-based treatment. Therefore, examining new molecules with potential antinociceptive properties targeting TRPV4 modulation would be interesting. Identifying such agents could lead to the development of treatment strategies with improved pain-relieving effects and fewer adverse effects than the currently available analgesics.
Collapse
Affiliation(s)
- Caren Tatiane de David Antoniazzi
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Náthaly Andrighetto Ruviaro
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| | - Diulle Spat Peres
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Patrícia Rodrigues
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Fernanda Tibolla Viero
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
| | - Gabriela Trevisan
- Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (C.T.d.D.A.); (D.S.P.); (P.R.); (F.T.V.)
- Graduate Program in Toxicological Biochemistry, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil;
| |
Collapse
|
2
|
Ran L, Ye T, Erbs E, Ehl S, Spassky N, Sumara I, Zhang Z, Ricci R. KCNN4 links PIEZO-dependent mechanotransduction to NLRP3 inflammasome activation. Sci Immunol 2023; 8:eadf4699. [PMID: 38134241 DOI: 10.1126/sciimmunol.adf4699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Immune cells sense the microenvironment to fine-tune their inflammatory responses. Patients with cryopyrin-associated periodic syndrome (CAPS), caused by mutations in the NLRP3 gene, develop autoinflammation triggered by nonantigenic cues such as from the environment. However, the underlying mechanisms are poorly understood. Here, we uncover that KCNN4, a calcium-activated potassium channel, links PIEZO-mediated mechanotransduction to NLRP3 inflammasome activation. Yoda1, a PIEZO1 agonist, lowered the threshold for NLRP3 inflammasome activation. PIEZO-mediated sensing of stiffness and shear stress increased NLRP3-dependent inflammation. Myeloid-specific deletion of PIEZO1/2 protected mice from gouty arthritis. Mechanistically, activation of PIEZO1 triggers calcium influx, which activates KCNN4 to evoke potassium efflux and promotes NLRP3 inflammasome activation. Activation of PIEZO signaling was sufficient to activate the inflammasome in cells expressing CAPS-causing NLRP3 mutants via KCNN4. Last, pharmacological inhibition of KCNN4 alleviated autoinflammation in cells of patients with CAPS and in mice bearing a CAPS mutation. Thus, PIEZO-dependent mechanical inputs boost inflammation in NLRP3-dependent diseases, including CAPS.
Collapse
Affiliation(s)
- Li Ran
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Eric Erbs
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, Albert-Ludwigs University, Freiburg, Germany
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research Univresity, Paris, France
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Zhirong Zhang
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Romeo Ricci
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
3
|
Wu J, Li Z, Deng Y, Lu X, Luo C, Mu X, Zhang T, Liu Q, Tang S, Li J, An Q, Fan D, Xiang Y, Wu X, Hu Y, Du Q, Xu J, Xie R. Function of TRP channels in monocytes/macrophages. Front Immunol 2023; 14:1187890. [PMID: 37404813 PMCID: PMC10315479 DOI: 10.3389/fimmu.2023.1187890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/02/2023] [Indexed: 07/06/2023] Open
Abstract
The transient receptor potential channel (TRP channel) family is a kind of non- specific cation channel widely distributed in various tissues and organs of the human body, including the respiratory system, cardiovascular system, immune system, etc. It has been reported that various TRP channels are expressed in mammalian macrophages. TRP channels may be involved in various signaling pathways in the development of various systemic diseases through changes in intracellular concentrations of cations such as calcium and magnesium. These TRP channels may also intermingle with macrophage activation signals to jointly regulate the occurrence and development of diseases. Here, we summarize recent findings on the expression and function of TRP channels in macrophages and discuss their role as modulators of macrophage activation and function. As research on TRP channels in health and disease progresses, it is anticipated that positive or negative modulators of TRP channels for treating specific diseases may be promising therapeutic options for the prevention and/or treatment of disease.
Collapse
Affiliation(s)
- Jiangbo Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zhuo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Ya Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xianmin Lu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Chen Luo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xingyi Mu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qi Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Siqi Tang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jiajing Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qimin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Dongdong Fan
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yiwei Xiang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Xianli Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Qian Du
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
D'Elia JA, Weinrauch LA. Gated Calcium Ion Channel and Mutation Mechanisms in Multidrug-Resistant Tuberculosis. Int J Mol Sci 2023; 24:ijms24119670. [PMID: 37298620 DOI: 10.3390/ijms24119670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
A wide spectrum of Gram-positive/Gram-negative bacteria has been found resistant to a wide spectrum of antibiotics in the United States of America during the past decade. Drug-resistant tuberculosis is not yet a major threat in North/South America, Europe, and the Middle East. However, the migration of populations in times of drought, famine, and hostilities may increase the global reach of this ancient pathogen. Given an increased spread from China and India to African countries, drug-resistant Mycobacterium tuberculosis has become an emerging topic of concern for Europe and North America. Due to the dangers associated with the spread of pathogens among different populations, the World Health Organization continues to expand healthcare advisories for therapeutic approaches for both stationary and migrating populations. As much of the literature focuses on endemic to pandemic viruses, we remain concerned that other treatable communicable diseases may be ignored. One such disease is multidrug-resistant tuberculosis. We focus on molecular mechanisms that this pathogen relies upon for the development of multidrug resistance via gene mutation and the evolutionary development of new enzyme and calcium channels.
Collapse
Affiliation(s)
- John A D'Elia
- Kidney/Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Larry A Weinrauch
- Kidney/Hypertension Section, E P Joslin Research Laboratory, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
5
|
Abstract
Immune responses are governed by signals from the tissue microenvironment, and in addition to biochemical signals, mechanical cues and forces arising from the tissue, its extracellular matrix and its constituent cells shape immune cell function. Indeed, changes in biophysical properties of tissue alter the mechanical signals experienced by cells in many disease conditions, in inflammatory states and in the context of ageing. These mechanical cues are converted into biochemical signals through the process of mechanotransduction, and multiple pathways of mechanotransduction have been identified in immune cells. Such pathways impact important cellular functions including cell activation, cytokine production, metabolism, proliferation and trafficking. Changes in tissue mechanics may also represent a new form of 'danger signal' that alerts the innate and adaptive immune systems to the possibility of injury or infection. Tissue mechanics can change temporally during an infection or inflammatory response, offering a novel layer of dynamic immune regulation. Here, we review the emerging field of mechanoimmunology, focusing on how mechanical cues at the scale of the tissue environment regulate immune cell behaviours to initiate, propagate and resolve the immune response.
Collapse
|
6
|
Selezneva A, Gibb AJ, Willis D. The contribution of ion channels to shaping macrophage behaviour. Front Pharmacol 2022; 13:970234. [PMID: 36160429 PMCID: PMC9490177 DOI: 10.3389/fphar.2022.970234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The expanding roles of macrophages in physiological and pathophysiological mechanisms now include normal tissue homeostasis, tissue repair and regeneration, including neuronal tissue; initiation, progression, and resolution of the inflammatory response and a diverse array of anti-microbial activities. Two hallmarks of macrophage activity which appear to be fundamental to their diverse cellular functionalities are cellular plasticity and phenotypic heterogeneity. Macrophage plasticity allows these cells to take on a broad spectrum of differing cellular phenotypes in response to local and possibly previous encountered environmental signals. Cellular plasticity also contributes to tissue- and stimulus-dependent macrophage heterogeneity, which manifests itself as different macrophage phenotypes being found at different tissue locations and/or after different cell stimuli. Together, plasticity and heterogeneity align macrophage phenotypes to their required local cellular functions and prevent inappropriate activation of the cell, which could lead to pathology. To execute the appropriate function, which must be regulated at the qualitative, quantitative, spatial and temporal levels, macrophages constantly monitor intracellular and extracellular parameters to initiate and control the appropriate cell signaling cascades. The sensors and signaling mechanisms which control macrophages are the focus of a considerable amount of research. Ion channels regulate the flow of ions between cellular membranes and are critical to cell signaling mechanisms in a variety of cellular functions. It is therefore surprising that the role of ion channels in the macrophage biology has been relatively overlooked. In this review we provide a summary of ion channel research in macrophages. We begin by giving a narrative-based explanation of the membrane potential and its importance in cell biology. We then report on research implicating different ion channel families in macrophage functions. Finally, we highlight some areas of ion channel research in macrophages which need to be addressed, future possible developments in this field and therapeutic potential.
Collapse
|
7
|
Li Y, Liu S, Chen Y, Chen B, Xiao M, Yang B, Rai KR, Maarouf M, Guo G, Chen JL. Syk Facilitates Influenza A Virus Replication by Restraining Innate Immunity at the Late Stage of Viral Infection. J Virol 2022; 96:e0020022. [PMID: 35293768 PMCID: PMC9006912 DOI: 10.1128/jvi.00200-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022] Open
Abstract
Spleen tyrosine kinase (Syk) has recently come forth as a critical regulator of innate immune response. Previous studies identify Syk as a key kinase for STAT1 activation at the early stage of influenza A virus (IAV) infection that is involved in initial antiviral immunity. However, the involvement of Syk in host antiviral immunity during the late phase of IAV infection and its effect on pathogenesis of the virus remain unknown. Here, we found through time course studies that Syk restrained antiviral immune response at the late stage of IAV infection, thereby promoting viral replication. Depletion of Syk suppressed IAV replication in vitro, whereas ectopic expression of Syk facilitated viral replication. Moreover, Syk-deficient mice were employed, and we observed that knockout of Syk rendered mice more resistant to IAV infection, as evidenced by a lower degree of lung injury, slower body weight loss, and an increased survival rate of Syk knockout mice challenged with IAV. Furthermore, we revealed that Syk repressed the interferon response at the late stage of viral infection. Loss of Syk potentiated the expression of type I and III interferons in both Syk-depleted cells and mice. Mechanistically, Syk interacted with TBK1 and modulated its phosphorylation status, thereby impeding TBK1 activation and restraining innate immune signaling that governs interferon response. Together, these findings unveil a role of Syk in temporally regulating host antiviral immunity and advance our understanding of complicated mechanisms underlying regulation of innate immunity against viral invasion. IMPORTANCE Innate immunity must be tightly controlled to eliminate invading pathogens while avoiding autoimmune or inflammatory diseases. Syk is essential for STAT1 activation at the early stage of IAV infection, which is critical for initial antiviral responses. Surprisingly, here a time course study showed that Syk suppressed innate immunity during late phases of IAV infection and thereby promoted IAV replication. Syk deficiency enhanced the expression of type I and III interferons, inhibited IAV replication, and rendered mice more resistant to IAV infection. Syk impaired innate immune signaling through impeding TBK1 activation. These data reveal that Syk participates in the initiation of antiviral defense against IAV infection and simultaneously contributes to the restriction of innate immunity at the late stage of viral infection, suggesting that Syk serves a dual function in regulating antiviral responses. This finding provides new insights into complicated mechanisms underlying interaction between virus and host immune system.
Collapse
Affiliation(s)
- Yingying Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shasha Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Biao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meng Xiao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bincai Yang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kul Raj Rai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
8
|
Nguyen TN, Siddiqui G, Veldhuis NA, Poole DP. Diverse Roles of TRPV4 in Macrophages: A Need for Unbiased Profiling. Front Immunol 2022; 12:828115. [PMID: 35126384 PMCID: PMC8811046 DOI: 10.3389/fimmu.2021.828115] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a non-selective mechanosensitive ion channel expressed by various macrophage populations. Recent reports have characterized the role of TRPV4 in shaping the activity and phenotype of macrophages to influence the innate immune response to pathogen exposure and inflammation. TRPV4 has been studied extensively in the context of inflammation and inflammatory pain. Although TRPV4 activity has been generally described as pro-inflammatory, emerging evidence suggests a more complex role where this channel may also contribute to anti-inflammatory activities. However, detailed understanding of how TRPV4 may influence the initiation, maintenance, and resolution of inflammatory disease remains limited. This review highlights recent insights into the cellular processes through which TRPV4 contributes to pathological conditions and immune processes, with a focus on macrophage biology. The potential use of high-throughput and omics methods as an unbiased approach for studying the functional outcomes of TRPV4 activation is also discussed.
Collapse
Affiliation(s)
- Thanh-Nhan Nguyen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Nicholas A. Veldhuis
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| | - Daniel P. Poole
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Australian Research Council (ARC) Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash University, Parkville, VIC, Australia
- *Correspondence: Daniel P. Poole, ; Nicholas A. Veldhuis,
| |
Collapse
|
9
|
Orsini EM, Perelas A, Southern BD, Grove LM, Olman MA, Scheraga RG. Stretching the Function of Innate Immune Cells. Front Immunol 2021; 12:767319. [PMID: 34795674 PMCID: PMC8593101 DOI: 10.3389/fimmu.2021.767319] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The importance of innate immune cells to sense and respond to their physical environment is becoming increasingly recognized. Innate immune cells (e.g. macrophages and neutrophils) are able to receive mechanical signals through several mechanisms. In this review, we discuss the role of mechanosensitive ion channels, such as Piezo1 and transient receptor potential vanilloid 4 (TRPV4), and cell adhesion molecules, such as integrins, selectins, and cadherins in biology and human disease. Furthermore, we explain that these mechanical stimuli activate intracellular signaling pathways, such as MAPK (p38, JNK), YAP/TAZ, EDN1, NF-kB, and HIF-1α, to induce protein conformation changes and modulate gene expression to drive cellular function. Understanding the mechanisms by which immune cells interpret mechanosensitive information presents potential targets to treat human disease. Important areas of future study in this area include autoimmune, allergic, infectious, and malignant conditions.
Collapse
Affiliation(s)
- Erica M Orsini
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Apostolos Perelas
- Department of Pulmonary and Critical Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Brian D Southern
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Lisa M Grove
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Mitchell A Olman
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Rachel G Scheraga
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, United States.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
10
|
Endothelial Transient Receptor Potential V4 Channels Mediate Lung Ischemia-Reperfusion Injury. Ann Thorac Surg 2021; 113:1256-1264. [PMID: 33961815 DOI: 10.1016/j.athoracsur.2021.04.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Lung ischemia-reperfusion injury (IRI), involving severe inflammation and edema, is a major cause of primary graft dysfunction following transplant. Activation of transient receptor potential vanilloid 4 (TRPV4) channels modulates vascular permeability. Thus, this study tests the hypothesis that endothelial TRPV4 channels mediate lung IRI. METHODS C57BL/6 wild-type (WT), TRPV4-/-, tamoxifen-inducible endothelial TRPV4 knockout (TRPV4EC-/-), and tamoxifen-treated control (TRPV4fl/fl) mice underwent lung IR using a left lung hilar-ligation model (n≥6 mice/group). WT mice were also treated with a TRPV4-specific inhibitor (GSK2193874; 1mg/kg) (WT+GSK219). Partial pressure of oxygen (PaO2), edema (wet-to-dry weight ratio), compliance, neutrophil infiltration, and cytokine concentrations in bronchioalveolar lavage fluid were assessed. Pulmonary microvascular endothelial cells (PMVECs) were characterized in vitro following exposure to hypoxia-reoxygenation. RESULTS Compared to WT, PaO2 following IR was significantly improved in TRPV4-/- mice (133.1±43.9 vs 427.8±83.1 mmHg, p<0.001) and WT+GSK219 mice (133.1±43.9 vs 447.0±67.6 mmHg, p<0.001). Pulmonary edema and neutrophil infiltration were also significantly reduced after IR in TRPV4-/- and WT+GSK219 mice versus WT. TRPV4EC-/- mice following IR demonstrated significantly improved oxygenation versus control (109.2±21.6 vs 405.3±41.4 mmHg, p<0.001) as well as significantly improved compliance, and significantly less edema, neutrophil infiltration and proinflammatory cytokine production (TNF-α, CXCL1, IL-17, IFN-γ). Hypoxia-reoxygenation-induced permeability and CXCL1 expression by PMVECs was significantly attenuated by TRPV4 inhibitors. CONCLUSIONS Endothelial TRPV4 plays a key role in vascular permeability and lung inflammation following IR. TRPV4 channels may be a promising therapeutic target to mitigate lung IRI and decrease the incidence of primary graft dysfunction following transplant. (Word Count: 249/250).
Collapse
|