1
|
Zhou X, Wang Y, Dou Z, Delfanti G, Tsahouridis O, Pellegry CM, Zingarelli M, Atassi G, Woodcock MG, Casorati G, Dellabona P, Kim WY, Guo L, Savoldo B, Tsagaratou A, Milner JJ, Metelitsa LS, Dotti G. CAR-redirected natural killer T cells demonstrate superior antitumor activity to CAR-T cells through multimodal CD1d-dependent mechanisms. NATURE CANCER 2024:10.1038/s43018-024-00830-0. [PMID: 39354225 DOI: 10.1038/s43018-024-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2024] [Indexed: 10/03/2024]
Abstract
Human natural killer T (NKT) cells have been proposed as a promising cell platform for chimeric antigen receptor (CAR) therapy in solid tumors. Here we generated murine CAR-NKT cells and compared them with CAR-T cells in immune-competent mice. Both CAR-NKT cells and CAR-T cells showed similar antitumor effects in vitro, but CAR-NKT cells showed superior antitumor activity in vivo via CD1d-dependent immune responses in the tumor microenvironment. Specifically, we show that CAR-NKT cells eliminate CD1d-expressing M2-like macrophages. In addition, CAR-NKT cells promote epitope spreading and activation of endogenous T cell responses against tumor-associated neoantigens. Finally, we observed that CAR-NKT cells can co-express PD1 and TIM3 and show an exhaustion phenotype in a model of high tumor burden. PD1 blockade as well as vaccination augmented the antitumor activity of CAR-NKT cells. In summary, our results demonstrate the multimodal function of CAR-NKT cells in solid tumors, further supporting the rationale for developing CAR-NKT therapies in the clinic.
Collapse
Affiliation(s)
- Xin Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Ying Wang
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zhangqi Dou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gloria Delfanti
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ourania Tsahouridis
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Manuela Zingarelli
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Gatphan Atassi
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Mark G Woodcock
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Division of Oncology, Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Linjie Guo
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Ageliki Tsagaratou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - J Justin Milner
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Leonid S Metelitsa
- Center for Advanced Innate Cell Therapy, Texas Children's Cancer Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Okada M, Yamasaki S, Nakazato H, Hirahara Y, Ishibashi T, Kawamura M, Shimizu K, Fujii SI. ARID1A-Deficient Tumors Acquire Immunogenic Neoantigens during the Development of Resistance to Targeted Therapy. Cancer Res 2024; 84:2792-2805. [PMID: 39228255 DOI: 10.1158/0008-5472.can-23-2846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 09/05/2024]
Abstract
Neoantigen-based immunotherapy is an attractive potential treatment for previously intractable tumors. To effectively broaden the application of this approach, stringent biomarkers are crucial to identify responsive patients. ARID1A, a frequently mutated subunit of SWI/SNF chromatin remodeling complex, has been reported to determine tumor immunogenicity in some cohorts; however, mutations and deletions of ARID1A are not always linked to clinical responses to immunotherapy. In this study, we investigated immunotherapeutic responses based on ARID1A status in targeted therapy-resistant cancers. Mouse and human BRAFV600E melanomas with or without ARID1A expression were transformed into resistant to vemurafenib, an FDA-approved specific BRAFV600E inhibitor. Anti-PD-1 antibody treatment enhanced antitumor immune responses in vemurafenib-resistant ARID1A-deficient tumors but not in ARID1A-intact tumors or vemurafenib-sensitive ARID1A-deficient tumors. Neoantigens derived from accumulated somatic mutations during vemurafenib resistance were highly expressed in ARID1A-deficient tumors and promoted tumor immunogenicity. Furthermore, the newly generated neoantigens could be utilized as immunotherapeutic targets by vaccines. Finally, targeted therapy resistance-specific neoantigen in experimental human melanoma cells lacking ARID1A were validated to elicit T-cell receptor responses. Collectively, the classification of ARID1A-mutated tumors based on vemurafenib resistance as an additional indicator of immunotherapy response will enable a more accurate prediction to guide cancer treatment. Furthermore, the neoantigens that emerge with therapy resistance can be promising therapeutic targets for refractory tumors. Significance: Chemotherapy resistance promotes the acquisition of immunogenic neoantigens in ARID1A-deficient tumors that confer sensitivity to immune checkpoint blockade and can be utilized for developing antitumor vaccines, providing strategies to improve immunotherapy efficacy.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Nakazato
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuhya Hirahara
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takuya Ishibashi
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masami Kawamura
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Japan
| |
Collapse
|
3
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
4
|
Koh DI, Lee M, Park YS, Shin JS, Kim J, Ryu YS, Lee JH, Bae S, Lee MS, Hong JK, Jeong HR, Choi M, Hong SW, Kim DK, Lee HK, Kim B, Yoon YS, Jin DH. The Immune Suppressor IGSF1 as a Potential Target for Cancer Immunotherapy. Cancer Immunol Res 2024; 12:491-507. [PMID: 38289363 DOI: 10.1158/2326-6066.cir-23-0817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 01/25/2024] [Indexed: 04/04/2024]
Abstract
The development of first-generation immune-checkpoint inhibitors targeting PD-1/PD-L1 and CTLA-4 ushered in a new era in anticancer therapy. Although immune-checkpoint blockade therapies have shown clinical success, a substantial number of patients yet fail to benefit. Many studies are under way to discover next-generation immunotherapeutic targets. Immunoglobulin superfamily member 1 (IGSF1) is a membrane glycoprotein proposed to regulate thyroid function. Despite containing 12 immunoglobin domains, a possible role for IGSF1, in immune response, remains unknown. Here, our studies revealed that IGSF1 is predominantly expressed in tumors but not normal tissues, and increased expression is observed in PD-L1low non-small cell lung cancer (NSCLC) cells as compared with PD-L1high cells. Subsequently, we developed and characterized an IGSF1-specific human monoclonal antibody, WM-A1, that effectively promoted antitumor immunity and overcame the limitations of first-generation immune-checkpoint inhibitors, likely via a distinct mechanism of action. We further demonstrated high WM-A1 efficacy in humanized peripheral blood mononuclear cells (PBMC), and syngeneic mouse models, finding additive efficacy in combination with an anti-PD-1 (a well-characterized checkpoint inhibitor). These findings support IGSF1 as an immune target that might complement existing cancer immunotherapeutics.
Collapse
Affiliation(s)
- Dong-In Koh
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Minki Lee
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Yoon Sun Park
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jae-Sik Shin
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Joseph Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yea Seong Ryu
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | | | | | - Mi So Lee
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Jun Ki Hong
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | | | - Mingee Choi
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | | | - Dong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun-Kyung Lee
- Department of Internal Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Inje University Busan Paik Hospital, Busan, Republic of Korea
| | - Bomi Kim
- Department of Pathology, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Yoo Sang Yoon
- Department of Thoracic and Cardiovascular Surgery, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Dong-Hoon Jin
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Okada M, Shimizu K, Nakazato H, Yamasaki S, Fujii SI. Detection of mutant antigen-specific T cell receptors against multiple myeloma for T cell engineering. Mol Ther Methods Clin Dev 2023; 29:541-555. [PMID: 37359417 PMCID: PMC10285226 DOI: 10.1016/j.omtm.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023]
Abstract
Multiple myeloma (MM) remains an incurable hematological neoplasm. Neoantigen-specific T cell receptor (TCR)-engineered T (TCR-T) cell therapy is a potential alternative treatment. Particularly, TCRs derived from a third-party donor may cover broad ranges of neoantigens, whereas TCRs in patients suffering from immune disorders are limited. However, the efficacy and feasibility of treating MM have not been evaluated thoroughly. In this study, we established a system for identifying immunogenic mutant antigens on MM cells and their corresponding TCRs using healthy donor-derived peripheral blood mononuclear cells (PBMCs). Initially, the immune responses to 35 candidate peptides predicted by the immunogenomic analysis were investigated. Peptide-reactive T lymphocytes were enriched, and subsequently, TCR repertoires were determined by single-cell TCR sequencing. Eleven reconstituted TCRs showed mutation-specific responses against 4 peptides. Particularly, we verified the HLA-A∗24:02-binding QYSPVQATF peptide derived from COASY S55Y as the naturally processed epitope across MM cells, making it a promising immune target. Corresponding TCRs specifically recognized COASY S55Y+HLA-A∗24:02+ MM cells and augmented tumoricidal activity. Finally, adoptive cell transfer of TCR-T cells showed objective responses in the xenograft model. We initiatively proposed the utility of tumor mutated antigen-specific TCR genes to suppress MM. Our unique strategy will facilitate further identification of neoantigen-specific TCRs.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Nakazato
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
6
|
Mortezaee K, Majidpoor J, Najafi S, Tasa D. Bypassing anti-PD-(L)1 therapy: Mechanisms and management strategies. Biomed Pharmacother 2023; 158:114150. [PMID: 36577330 DOI: 10.1016/j.biopha.2022.114150] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Resistance to immune checkpoint inhibitors (ICIs) is a major issue of the current era in cancer immunotherapy. Immune evasion is a multi-factorial event, which occurs generally at a base of cold immunity. Despite advances in the field, there are still unsolved challenges about how to combat checkpoint hijacked by tumor cells and what are complementary treatment strategies to render durable anti-tumor outcomes. A point is that anti-programed death-1 receptor (PD-1)/anti-programmed death-ligand 1 (PD-L1) is not the solo path of immune escape, and responses in many types of solid tumors to the PD-1/PD-L1 inhibitors are not satisfactory. Thus, seeking mechanisms inter-connecting tumor with its immune ecosystem nearby unravel more about resistance mechanisms so as to develop methods for sustained reinvigoration of immune activity against cancer. In this review, we aimed to discuss about common and specific paths taken by tumor cells to evade immune surveillance, describing novel detection strategies, as well as suggesting some approaches to recover tumor sensitivity to the anti-PD-(L)1 therapy based on the current knowledge.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Tasa
- Hepatopancreatobiliary Surgery Fellowship, Organ Transplantation Group, Massih Daneshvari Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Surgery, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
7
|
Smok-Kalwat J, Mertowska P, Mertowski S, Smolak K, Kozińska A, Koszałka F, Kwaśniewski W, Grywalska E, Góźdź S. The Importance of the Immune System and Molecular Cell Signaling Pathways in the Pathogenesis and Progression of Lung Cancer. Int J Mol Sci 2023; 24:1506. [PMID: 36675020 PMCID: PMC9861992 DOI: 10.3390/ijms24021506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Lung cancer is a disease that in recent years has become one of the greatest threats to modern society. Every year there are more and more new cases and the percentage of deaths caused by this type of cancer increases. Despite many studies, scientists are still looking for answers regarding the mechanisms of lung cancer development and progression, with particular emphasis on the role of the immune system. The aim of this literature review was to present the importance of disorders of the immune system and the accompanying changes at the level of cell signaling in the pathogenesis of lung cancer. The collected results showed that in the process of immunopathogenesis of almost all subtypes of lung cancer, changes in the tumor microenvironment, deregulation of immune checkpoints and abnormalities in cell signaling pathways are involved, which contribute to the multistage and multifaceted carcinogenesis of this type of cancer. We, therefore, suggest that in future studies, researchers should focus on a detailed analysis of tumor microenvironmental immune checkpoints, and to validate their validity, perform genetic polymorphism analyses in a wide range of patients and healthy individuals to determine the genetic susceptibility to lung cancer development. In addition, further research related to the analysis of the tumor microenvironment; immune system disorders, with a particular emphasis on immunological checkpoints and genetic differences may contribute to the development of new personalized therapies that improve the prognosis of patients.
Collapse
Affiliation(s)
- Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Aleksandra Kozińska
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Filip Koszałka
- Student Research Group of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| |
Collapse
|
8
|
Jie C, Li R, Cheng Y, Wang Z, Wu Q, Xie C. Prospects and feasibility of synergistic therapy with radiotherapy, immunotherapy, and DNA methyltransferase inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1122352. [PMID: 36875059 PMCID: PMC9981667 DOI: 10.3389/fimmu.2023.1122352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The morbidity and mortality of lung cancer are increasing, seriously threatening human health and life. Non-small cell lung cancer (NSCLC) has an insidious onset and is not easy to be diagnosed in its early stage. Distant metastasis often occurs and the prognosis is poor. Radiotherapy (RT) combined with immunotherapy, especially with immune checkpoint inhibitors (ICIs), has become the focus of research in NSCLC. The efficacy of immunoradiotherapy (iRT) is promising, but further optimization is necessary. DNA methylation has been involved in immune escape and radioresistance, and becomes a game changer in iRT. In this review, we focused on the regulation of DNA methylation on ICIs treatment resistance and radioresistance in NSCLC and elucidated the potential synergistic effects of DNA methyltransferases inhibitors (DNMTis) with iRT. Taken together, we outlined evidence suggesting that a combination of DNMTis, RT, and immunotherapy could be a promising treatment strategy to improve NSCLC outcomes.
Collapse
Affiliation(s)
- Chen Jie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rumeng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajie Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Mortezaee K, Majidpoor J, Najafi S. VISTA immune regulatory effects in bypassing cancer immunotherapy: Updated. Life Sci 2022; 310:121083. [DOI: 10.1016/j.lfs.2022.121083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022]
|
10
|
Zhou X, Ni Y, Liang X, Lin Y, An B, He X, Zhao X. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance. Front Immunol 2022; 13:915094. [PMID: 36189283 PMCID: PMC9520263 DOI: 10.3389/fimmu.2022.915094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Immune checkpoint blockade (ICB) has rapidly transformed the treatment paradigm for various cancer types. Multiple single or combinations of ICB treatments have been approved by the US Food and Drug Administration, providing more options for patients with advanced cancer. However, most patients could not benefit from these immunotherapies due to primary and acquired drug resistance. Thus, a better understanding of the mechanisms of ICB resistance is urgently needed to improve clinical outcomes. Here, we focused on the changes in the biological functions of CD8+ T cells to elucidate the underlying resistance mechanisms of ICB therapies and summarized the advanced coping strategies to increase ICB efficacy. Combinational ICB approaches and individualized immunotherapies require further in-depth investigation to facilitate longer-lasting efficacy and a more excellent safety of ICB in a broader range of patients.
Collapse
|
11
|
Long Y, Yu X, Chen R, Tong Y, Gong L. Noncanonical PD-1/PD-L1 Axis in Relation to the Efficacy of Anti-PD Therapy. Front Immunol 2022; 13:910704. [PMID: 35663968 PMCID: PMC9157498 DOI: 10.3389/fimmu.2022.910704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
With programmed death 1/ligand 1 (PD-1/PD-L1) as the cornerstone, anti-PD antibodies have pioneered revolutionary immunotherapies for malignancies. But most patients struggled to respond to anti-PD owing to primary or acquired resistance or even hyperprogression, pointing to more efforts needed to explore this axis. PD-1 constrains T-cell immunoreactivity via engaging with PD-L1 of tumor/myeloid cells is the canonical PD-1/PD-L1 axis function mode. Studies are increasingly aware of the impact of noncanonical PD-1/PD-L1 expression in various cancers. PD-L1 induced on activated T-cells ligates to PD-1 to mediate self-tolerance or acts on intratumoral myeloid cells and other T-cells, affecting their survival, differentiation and immunophenotyping, leading to tumor immunosuppression. Myeloid PD-1 interferes with their proliferation, differentiation, cytokine secretion and phagocytosis, mediating remarkable pro-tumor effects. Tumor cell intrinsic PD-1 signaling has diverse functions in different tumors, resulting in pro-proliferation or proliferation inhibition. These nonclassical PD-1/PD-L1 functions may be novel anti-PD mechanisms or causes of treatment resistance. This review highlights the nonnegligible role of T-cell-intrinsic PD-L1 and tumor/myeloid PD-1 in the cell interplay network and the complex impact on the efficacy of anti-PD antibodies. Reconsidering and rational utilization of the comprehensive PD-1/PD-L1 axis could cumulate breakthroughs in precision treatment and combination for anti-PD therapies.
Collapse
Affiliation(s)
- Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Runqiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yongliang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
12
|
Okada M, Shimizu K, Fujii SI. Identification of Neoantigens in Cancer Cells as Targets for Immunotherapy. Int J Mol Sci 2022; 23:ijms23052594. [PMID: 35269735 PMCID: PMC8910406 DOI: 10.3390/ijms23052594] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical benefits of immune checkpoint blockage (ICB) therapy have been widely reported. In patients with cancer, researchers have demonstrated the clinical potential of antitumor cytotoxic T cells that can be reinvigorated or enhanced by ICB. Compared to self-antigens, neoantigens derived from tumor somatic mutations are believed to be ideal immune targets in tumors. Candidate tumor neoantigens can be identified through immunogenomic or immunopeptidomic approaches. Identification of neoantigens has revealed several points of the clinical relevance. For instance, tumor mutation burden (TMB) may be an indicator of immunotherapy. In various cancers, mutation rates accompanying neoantigen loads may be indicative of immunotherapy. Furthermore, mismatch repair-deficient tumors can be eradicated by T cells in ICB treatment. Hence, immunotherapies using vaccines or adoptive T-cell transfer targeting neoantigens are potential innovative strategies. However, significant efforts are required to identify the optimal epitopes. In this review, we summarize the recent progress in the identification of neoantigens and discussed preclinical and clinical studies based on neoantigens. We also discuss the issues remaining to be addressed before clinical applications of these new therapeutic strategies can be materialized.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
| | - Shin-ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; (M.O.); (K.S.)
- Program for Drug Discovery and Medical Technology Platforms, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- Correspondence: ; Tel.: +81-45-503-7062
| |
Collapse
|
13
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|