1
|
Fan H, Fang N, Yang B, Xian H, Li Z. Fluorescence lifetime imaging of human pancreatic lipase activity using a novel probe for early diagnosis of severe acute pancreatitis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125171. [PMID: 39332173 DOI: 10.1016/j.saa.2024.125171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Severe Acute Pancreatitis, a serious condition caused by factors such as gallstones and chronic excessive alcohol consumption, with a very high mortality rate. Human pancreatic lipase (hPL) is a key digestive enzyme and abnormal activity levels of this enzyme are important indicators for diagnosing and monitoring pancreatic diseases. A fluorescent probe, LPP, has been developed to monitor the activity of hPL, especially in cases of SAP. The probe is based on cyanine isoindole derivatives, in vitro experiments confirmed the high specificity and sensitivity of the probe, with a detection limit of 0.012 U/mL, reactions completed within 10 min, and effective monitoring of pancreatic lipase activity in various biological samples. The stability and low cytotoxicity of LPP make it suitable for clinical applications, providing new tools and perspectives for the research and treatment of pancreatic diseases and related metabolic abnormalities. In addition, the change in fluorescence lifetime after the reaction of the probe with lipase allows for fluorescence lifetime imaging (FLIM), effectively monitoring the dynamic changes of hPL and enabling early diagnosis and monitoring of pancreatitis. This research not only enhances the understanding of pancreatic lipase activity detection but also has the potential to improve the diagnostics and treatment of pancreatitis.
Collapse
Affiliation(s)
- Haowen Fan
- Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, China
| | - Ning Fang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China
| | - Bingbing Yang
- Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, China
| | - Hua Xian
- Affiliated Hospital of Nantong University, Nantong University, 226001 Nantong, China
| | - Zhen Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Torchi A, Ghamgui H, Cherif S. Basic strategies for monitoring lipase activity: A review. Anal Biochem 2025; 696:115659. [PMID: 39244002 DOI: 10.1016/j.ab.2024.115659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Lipases are involved in the basic metabolism of many organisms from simple microorganisms to mammals. Moreover, these versatile biocatalysts can catalyze various types of reactions, such as esterification, interesterification, aminolysis, hydrolysis, and many important classic organic reactions under mild conditions, which play critical roles in industrial catalysis, drug discovery, and medical diagnosis of diseases. The heterogeneous nature of this catalysis requires intimate contact between them and lipid emulsion droplets. The lipolytic activity of production isolates could be determined by monitoring the release of fatty acids. Therefore, adequate monitoring of the reaction medium is critical to gain mechanistic knowledge of lipid hydrolysis in response to changes in process conditions. This review paper provides an overview of the principles underlying different strategies for monitoring lipid hydrolysis. The strengths and limitations of each method are analyzed to provide practical guidance for future research.
Collapse
Affiliation(s)
- Ayda Torchi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Department of Biology, National Engineering School of Sfax (ENIS), 3038, University of Sfax, Tunisia
| | - Hanen Ghamgui
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Department of Biology, National Engineering School of Sfax (ENIS), 3038, University of Sfax, Tunisia.
| | - Slim Cherif
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Department of Biology, National Engineering School of Sfax (ENIS), 3038, University of Sfax, Tunisia
| |
Collapse
|
3
|
Hou FB, Zhang N, Hou XD, Liu W, Fan YF, Zhu GH, Wu Y, Sun MR, Zhao B, Ge GB, Wang P. A rationally engineered specific near-infrared fluorogenic substrate of human pancreatic lipase for functional imaging and inhibitor screening. Analyst 2023; 148:2225-2236. [PMID: 37092796 DOI: 10.1039/d3an00198a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Obesity, now widespread all over the world, is frequently associated with several chronic diseases. Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and the inhibition of hPL is effective in reducing triglyceride intake and thus preventing and treating obesity. In this work, a practical sequential screening strategy was developed to construct a highly selective near-infrared fluorogenic substrate 7-STCFC for hPL. Under physiological conditions, 7-STCFC can be rapidly hydrolyzed by hPL to form 7-HTCFC, which triggers 254-fold NIR signal enhancement at 670 nm. 7-STCFC was successfully applied for the sensing and imaging of endogenous PL in living systems (including living cells, tissues and organs) with low cytotoxicity and high imaging resolution. Moreover, a high-throughput screening platform was established using 7-STCFC, and the inhibitory effects of 94 kinds of herbs toward hPL were evaluated. Among them, Pu-erh tea stood out with outstanding hPL inhibitory effects, and the inhibitory ingredients and involved inhibitory mechanism were further revealed, which strongly facilitates the discovery of novel anti-obesity agents targeting hPL. Collectively, these findings suggested that our strategy was practical to develop an isoform-specific fluorogenic substrate for a target enzyme, and 7-STCFC was a powerful tool for monitoring PL activity in complex biological systems with value for exploring physiological functions and rapid screening of inhibitors.
Collapse
Affiliation(s)
- Fan-Bin Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Na Zhang
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, Marburg, 35043, Germany
| | - Xu-Dong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wei Liu
- Department of Pharmacy, Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu-Fan Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yue Wu
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Meng-Ru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Yan M, Gu M, Yan Z, Wu X, Dong Y, Wang G. 2,3-Dihydroxynaphthalene invoked surface oxygen vacancy effect on Fe2O3 nanorods for photoanodic signal transduction tactic. Biosens Bioelectron 2023; 232:115286. [PMID: 37079991 DOI: 10.1016/j.bios.2023.115286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023]
Abstract
The state-of-art signal transduction mechanism of anodic photoelectrochemistry is constrained to the hole oxidation reaction, which greatly hinders its application for prospective biosensing applications. Herein, we present an innovative strategy for signal transduction by exploiting the in situ formation of surface oxygen vacancies (VOs) on Fe2O3 nanorods (NRs) through the self-coordination of 2,3-dihydroxynaphthalene (2,3-DHN) on their surfaces. The 2,3-DHN was connected with Fe(Ⅲ) on the surface of Fe2O3 NRs vis the formation of the five-membered ring structures accompanied by the generation of VOs. And the generated VOs introduced a new defect energy level for trapping the photogenerated holes, which enhanced the charge separation and realized the enhancement of photocurrent signal. The developed signal transduction strategy was validated by the first photoelectrochemical (PEC) sensing platform for β-glucoside (β-Glu) and lipase (LPS), which can catalyze the hydrolysis of 3-hydroxy-2-naphthalenyl-β-D-glucoside and naphthalene-2,3-diol diacetate, respectively, to produce 2,3-DHN for signal stimuli. The β-Glu and LPS were detected with linear ranges of 0.01-10.0 U/mL and 0.001-5.0 mg/mL, respectively. Detection limits of 3.3 × 10-3 U/mL and 0.32 μg/mL (S/N = 3) were achieved, for β-Glu and LPS, respectively. The present study not only provides a new strategy for spontaneous induction of VOs in situ for n-type semiconductors, but also innovates the anodic PEC signal transduction strategy with broadened biosensing applications.
Collapse
|
5
|
Hou FB, Zhang N, Zhu GH, Fan YF, Sun MR, Nie LL, Ge GB, Zheng YJ, Wang P. Functional Imaging and Inhibitor Screening of Human Pancreatic Lipase by a Resorufin-Based Fluorescent Probe. BIOSENSORS 2023; 13:bios13020283. [PMID: 36832049 PMCID: PMC9953885 DOI: 10.3390/bios13020283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 05/28/2023]
Abstract
Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and inhibition of hPL is effective in reducing triglyceride intake, thereby preventing and treating obesity. In this study, a series of fatty acids with different carbon chain lengths were constructed to the fluorophore resorufin based on the substrate preference of hPL. Among them, RLE was found to have the best combination of stability, specificity, sensitivity and reactivity towards hPL. Under physiological conditions, RLE can be rapidly hydrolyzed by hPL and released to resorufin, which triggered approximately 100-fold fluorescence enhancement at 590 nm. RLE was successfully applied for sensing and imaging of endogenous PL in living systems with low cytotoxicity and high imaging resolution. Moreover, a visual high-throughput screening platform was established using RLE, and the inhibitory effects of hundreds of drugs and natural products toward hPL were evaluated. Collectively, this study reports a novel and highly specific enzyme-activatable fluorogenic substrate for hPL that could serve as a powerful tool for monitoring hPL activity in complex biological systems and showcases the potential to explore physiological functions and rapid screening of inhibitors.
Collapse
Affiliation(s)
- Fan-Bin Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Na Zhang
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Fan Fan
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng-Ru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang-Liang Nie
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue-Juan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Xia S, Yin F, Xu L, Zhao B, Wu W, Ma Y, Lin JM, Liu Y, Zhao M, Hu Q. Paper-Based Distance Sensor for the Detection of Lipase via a Phase Separation-Induced Viscosity Change. Anal Chem 2022; 94:17055-17062. [PMID: 36455011 DOI: 10.1021/acs.analchem.2c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Human pancreatic lipase is a symbolic biomarker for the diagnosis of acute pancreatitis, which has profound significance for clinical detection and disease treatment. Herein, we first demonstrate a paper-based lipase sensor via a phase separation-induced viscosity change. Lipase catalyzes triolein to produce oleic acid and glycerol. Adding an excess of Ca2+ produces calcium oleate. The remaining Ca2+ binds with sodium alginate, triggering hydrogelation with an "egg-box" structure. The viscosity change of the aqueous solution induced by the phase separation process can be quantified by measuring the solution flow distance on a pH test paper. The paper-based lipase sensor has high sensitivity with a detection limit of 0.052 U/mL and also shows excellent specificity. Additionally, it is also utilized for quantitative lipase analysis in human serum samples to exhibit its potency in acute pancreatitis detection. This method overcomes the drawbacks of low sensitivity, slow response, and poor reproducibility caused by the nonuniform distribution of the highly viscous hydrogel on the sensing interface in existing approaches. In conclusion, thanks to the prominent characteristics of high portability, low cost, and easy operation, it is prospective for simple quantitative detection of lipase and has great potential for commercialization.
Collapse
Affiliation(s)
- Shuang Xia
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan250014, China.,Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Fangchao Yin
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan250014, China.,Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Lulu Xu
- Department of Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan250021, China
| | - Binglu Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan250014, China.,Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Wenli Wu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan250014, China.,Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Yaohong Ma
- Key Laboratory for Biosensors of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan250353, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yulin Liu
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China.,Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan250014, China
| | - Mei Zhao
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan250014, China.,Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan250014, China.,Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan250014, China
| |
Collapse
|
7
|
Lucero MY, Gardner SH, Yadav AK, Borri A, Zhao Z, Chan J. Activity-based Photoacoustic Probes Reveal Elevated Intestinal MGL and FAAH Activity in a Murine Model of Obesity. Angew Chem Int Ed Engl 2022; 61:e202211774. [PMID: 36083191 PMCID: PMC9613605 DOI: 10.1002/anie.202211774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Obesity is a chronic health condition characterized by the accumulation of excessive body fat which can lead to and exacerbate cardiovascular disease, type-II diabetes, high blood pressure, and cancer through systemic inflammation. Unfortunately, visualizing key mediators of the inflammatory response, such as monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH), in a selective manner is a profound challenge owing to an overlapping substrate scope that involves arachidonic acid (AA). Specifically, these enzymes work in concert to generate AA, which in the context of obesity, has been implicated to control appetite and energy metabolism. In this study, we developed the first selective activity-based sensing probes to detect MGL (PA-HD-MGL) and FAAH (PA-HD-FAAH) activity via photoacoustic imaging. Activation of PA-HD-MGL and PA-HD-FAAH by their target enzymes resulted in 1.74-fold and 1.59-fold signal enhancements, respectively. Due to their exceptional selectivity profiles and deep-tissue photoacoustic imaging capabilities, these probes were employed to measure MGL and FAAH activity in a murine model of obesity. Contrary to conflicting reports suggesting levels of MGL can be attenuated or elevated, our results support the latter. Indeed, we discovered a marked increase of both targets in the gastrointestinal tract. These key findings set the stage to uncover the role of the endocannabinoid pathway in obesity-mediated inflammation.
Collapse
Affiliation(s)
- Melissa Y. Lucero
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Sarah H. Gardner
- Department of BiochemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Anuj K. Yadav
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Austin Borri
- Department of BiochemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Zhenxiang Zhao
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| | - Jefferson Chan
- Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Department of BiochemistryUniversity of Illinois at Urbana-ChampaignUrbanaIL61801USA
- Beckman Institute for Advanced Science and TechnologyUrbanaIL61801USA
| |
Collapse
|
8
|
High-throughput optical assays for sensing serine hydrolases in living systems and their applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Optical substrates for drug-metabolizing enzymes: Recent advances and future perspectives. Acta Pharm Sin B 2022; 12:1068-1099. [PMID: 35530147 PMCID: PMC9069481 DOI: 10.1016/j.apsb.2022.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/06/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs), a diverse group of enzymes responsible for the metabolic elimination of drugs and other xenobiotics, have been recognized as the critical determinants to drug safety and efficacy. Deciphering and understanding the key roles of individual DMEs in drug metabolism and toxicity, as well as characterizing the interactions of central DMEs with xenobiotics require reliable, practical and highly specific tools for sensing the activities of these enzymes in biological systems. In the last few decades, the scientists have developed a variety of optical substrates for sensing human DMEs, parts of them have been successfully used for studying target enzyme(s) in tissue preparations and living systems. Herein, molecular design principals and recent advances in the development and applications of optical substrates for human DMEs have been reviewed systematically. Furthermore, the challenges and future perspectives in this field are also highlighted. The presented information offers a group of practical approaches and imaging tools for sensing DMEs activities in complex biological systems, which strongly facilitates high-throughput screening the modulators of target DMEs and studies on drug/herb‒drug interactions, as well as promotes the fundamental researches for exploring the relevance of DMEs to human diseases and drug treatment outcomes.
Collapse
|
10
|
Luo J, Zhang H, Guan J, An B, Peng J, Zhu W, Wei N, Zhang Y. Detection of lipase activity in human serum based on a ratiometric fluorescent probe. NEW J CHEM 2021. [DOI: 10.1039/d1nj01155c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CARA can monitor lipase activity through hydrolyzing the ester bond to interrupt the FRET process.
Collapse
Affiliation(s)
- Jiajie Luo
- Departments of Pharmacology and Medicinal Chemistry
- Qingdao University School of Pharmacy
- Qingdao 266071
- China
| | - Hongyi Zhang
- Departments of Pharmacology and Medicinal Chemistry
- Qingdao University School of Pharmacy
- Qingdao 266071
- China
| | - Jialiang Guan
- Department of Emergency Internal Medicine
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Baoshuai An
- Departments of Pharmacology and Medicinal Chemistry
- Qingdao University School of Pharmacy
- Qingdao 266071
- China
| | - Junli Peng
- Departments of Pharmacology and Medicinal Chemistry
- Qingdao University School of Pharmacy
- Qingdao 266071
- China
| | - Wei Zhu
- Departments of Pharmacology and Medicinal Chemistry
- Qingdao University School of Pharmacy
- Qingdao 266071
- China
| | - Ningning Wei
- Departments of Pharmacology and Medicinal Chemistry
- Qingdao University School of Pharmacy
- Qingdao 266071
- China
| | - Yanru Zhang
- Departments of Pharmacology and Medicinal Chemistry
- Qingdao University School of Pharmacy
- Qingdao 266071
- China
| |
Collapse
|