1
|
Cao M, Day AM, Galler M, Latimer HR, Byrne DP, Foy TW, Dwyer E, Bennett E, Palmer J, Morgan BA, Eyers PA, Veal EA. A peroxiredoxin-P38 MAPK scaffold increases MAPK activity by MAP3K-independent mechanisms. Mol Cell 2023; 83:3140-3154.e7. [PMID: 37572670 DOI: 10.1016/j.molcel.2023.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/19/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
Peroxiredoxins (Prdxs) utilize reversibly oxidized cysteine residues to reduce peroxides and promote H2O2 signal transduction, including H2O2-induced activation of P38 MAPK. Prdxs form H2O2-induced disulfide complexes with many proteins, including multiple kinases involved in P38 MAPK signaling. Here, we show that a genetically encoded fusion between a Prdx and P38 MAPK is sufficient to hyperactivate the kinase in yeast and human cells by a mechanism that does not require the H2O2-sensing cysteine of the Prdx. We demonstrate that a P38-Prdx fusion protein compensates for loss of the yeast scaffold protein Mcs4 and MAP3K activity, driving yeast into mitosis. Based on our findings, we propose that the H2O2-induced formation of Prdx-MAPK disulfide complexes provides an alternative scaffold and signaling platform for MAPKK-MAPK signaling. The demonstration that formation of a complex with a Prdx is sufficient to modify the activity of a kinase has broad implications for peroxide-based signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Min Cao
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alison M Day
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin Galler
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Heather R Latimer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Dominic P Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Thomas W Foy
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Emilia Dwyer
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Elise Bennett
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jeremy Palmer
- Newcastle University Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Brian A Morgan
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Patrick A Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Elizabeth A Veal
- Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
2
|
Boronat S, Cabrera M, Vega M, Alcalá J, Salas-Pino S, Daga RR, Ayté J, Hidalgo E. Formation of Transient Protein Aggregate-like Centers Is a General Strategy Postponing Degradation of Misfolded Intermediates. Int J Mol Sci 2023; 24:11202. [PMID: 37446379 DOI: 10.3390/ijms241311202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
When misfolded intermediates accumulate during heat shock, the protein quality control system promotes cellular adaptation strategies. In Schizosaccharomyces pombe, thermo-sensitive proteins assemble upon stress into protein aggregate-like centers, PACs, to escape from degradation. The role of this protein deposition strategy has been elusive due to the use of different model systems and reporters, and to the addition of artificial inhibitors, which made interpretation of the results difficult. Here, we compare fission and budding yeast model systems, expressing the same misfolding reporters in experiments lacking proteasome or translation inhibitors. We demonstrate that mild heat shock triggers reversible PAC formation, with the collapse of both reporters and chaperones in a process largely mediated by chaperones. This assembly postpones proteasomal degradation of the misfolding reporters, and their Hsp104-dependent disassembly occurs during stress recovery. Severe heat shock induces formation of cytosolic PACs, but also of nuclear structures resembling nucleolar rings, NuRs, presumably to halt nuclear functions. Our study demonstrates that these distantly related yeasts use very similar strategies to adapt and survive to mild and severe heat shock and that aggregate-like formation is a general cellular scheme to postpone protein degradation and facilitate exit from stress.
Collapse
Affiliation(s)
- Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain
- Centro de Biología Molecular Severo Ochoa and Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jorge Alcalá
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Silvia Salas-Pino
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Carretera de Utrera, km1, 41013 Seville, Spain
| | - Rafael R Daga
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Carretera de Utrera, km1, 41013 Seville, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
3
|
Expression of Huntingtin and TDP-43 Derivatives in Fission Yeast Can Cause Both Beneficial and Toxic Effects. Int J Mol Sci 2022; 23:ijms23073950. [PMID: 35409310 PMCID: PMC8999813 DOI: 10.3390/ijms23073950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Many neurodegenerative disorders display protein aggregation as a hallmark, Huntingtin and TDP-43 aggregates being characteristic of Huntington disease and amyotrophic lateral sclerosis, respectively. However, whether these aggregates cause the diseases, are secondary by-products, or even have protective effects, is a matter of debate. Mutations in both human proteins can modulate the structure, number and type of aggregates, as well as their toxicity. To study the role of protein aggregates in cellular fitness, we have expressed in a highly tractable unicellular model different variants of Huntingtin and TDP-43. They each display specific patterns of aggregation and toxicity, even though in both cases proteins have to be very highly expressed to affect cell fitness. The aggregation properties of Huntingtin, but not of TDP-43, are affected by chaperones such as Hsp104 and the Hsp40 couple Mas5, suggesting that the TDP-43, but not Huntingtin, derivatives have intrinsic aggregation propensity. Importantly, expression of the aggregating form of Huntingtin causes a significant extension of fission yeast lifespan, probably as a consequence of kidnapping chaperones required for maintaining stress responses off. Our study demonstrates that in general these prion-like proteins do not cause toxicity under normal conditions, and in fact they can protect cells through indirect mechanisms which up-regulate cellular defense pathways.
Collapse
|
4
|
Salat-Canela C, Carmona M, Martín-García R, Pérez P, Ayté J, Hidalgo E. Stress-dependent inhibition of polarized cell growth through unbalancing the GEF/GAP regulation of Cdc42. Cell Rep 2021; 37:109951. [PMID: 34731607 DOI: 10.1016/j.celrep.2021.109951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022] Open
Abstract
Cdc42 GTPase rules cell polarity and growth in fission yeast. It is negatively and positively regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), respectively. Active Cdc42-GTP localizes to the poles, where it associates with numerous proteins constituting the polarity module. However, little is known about its downregulation. We describe here that oxidative stress causes Sty1-kinase-dependent Cdc42 inactivation at cell poles. Both the amount of active Cdc42 at tips and cell length inversely correlate with Sty1 activity, explaining the elongated morphology of Δsty1 cells. We have created stress-blinded cell poles either by eliminating two Cdc42 GAPs or through the constitutive tethering of Gef1 to cell tips, and we biochemically demonstrate that the GAPs Rga3/6 and the GEF Gef1 are direct substrates of Sty1. We propose that phosphorylation of Rga3/6 and Gef1 mediates the Sty1-dependent inhibition of Cdc42 at cell tips, halting polarized growth during stress adaptation.
Collapse
Affiliation(s)
- Clàudia Salat-Canela
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mercè Carmona
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Rebeca Martín-García
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, 37007 Salamanca, Spain.
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
5
|
The Putative RNA-Binding Protein Dri1 Promotes the Loading of Kinesin-14/Klp2 to the Mitotic Spindle and Is Sequestered into Heat-Induced Protein Aggregates in Fission Yeast. Int J Mol Sci 2021; 22:ijms22094795. [PMID: 33946513 PMCID: PMC8125374 DOI: 10.3390/ijms22094795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Cells form a bipolar spindle during mitosis to ensure accurate chromosome segregation. Proper spindle architecture is established by a set of kinesin motors and microtubule-associated proteins. In most eukaryotes, kinesin-5 motors are essential for this process, and genetic or chemical inhibition of their activity leads to the emergence of monopolar spindles and cell death. However, these deficiencies can be rescued by simultaneous inactivation of kinesin-14 motors, as they counteract kinesin-5. We conducted detailed genetic analyses in fission yeast to understand the mechanisms driving spindle assembly in the absence of kinesin-5. Here, we show that deletion of the dri1 gene, which encodes a putative RNA-binding protein, can rescue temperature sensitivity caused by cut7-22, a fission yeast kinesin-5 mutant. Interestingly, kinesin-14/Klp2 levels on the spindles in the cut7 mutants were significantly reduced by the dri1 deletion, although the total levels of Klp2 and the stability of spindle microtubules remained unaffected. Moreover, RNA-binding motifs of Dri1 are essential for its cytoplasmic localization and function. We have also found that a portion of Dri1 is spatially and functionally sequestered by chaperone-based protein aggregates upon mild heat stress and limits cell division at high temperatures. We propose that Dri1 might be involved in post-transcriptional regulation through its RNA-binding ability to promote the loading of Klp2 on the spindle microtubules.
Collapse
|
6
|
Boronat S, Cabrera M, Hidalgo E. Spatial sequestration of misfolded proteins as an active chaperone-mediated process during heat stress. Curr Genet 2021; 67:237-243. [PMID: 33386485 DOI: 10.1007/s00294-020-01135-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/05/2023]
Abstract
Under thermal stress, different protein quality control (PQC) strategies are activated to maintain an intact proteome, which may vary from one model system to another. Hence thermo-sensitive proteins that lose their active conformation might be refolded with the aid of chaperones or removed by the ubiquitin-proteasome system or the process of autophagy. We have recently developed thermo-sensitive reporters to study PQC in fission yeast and shown the relevance of a third adaptation strategy: the sequestration of misfolded proteins into inclusions which will prevent a rapid degradation and allow the refolding once stress ends. These protein inclusions, protein aggregate centers (PACs), contain a broad spectrum of misfolding/aggregation-prone proteins and chaperones involved in their assembly or dissolution. The chaperone couple Mas5/Ssa2 plays a crucial role in PAC formation, whereas the Hsp104 chaperone promotes their disassembly. The absence of aggregates observed in cells lacking Mas5 could be also explained by the activation of the transcription factor Hsf1 and the induction of chaperone genes, we have excluded this possibility here demonstrating that increased Hsf1 activity and the subsequent overexpression of chaperones do not prevent the assembly of protein aggregates. Protein deposition at certain locations also constitutes a tactic to inactivate proteins temporally. This is the case of Pyp1, the main phosphatase of the stress response kinase Sty1. Upon stress imposition, misfolded Pyp1 is sequestered into cytosolic protein foci while active Sty1 at the nucleus switches on the transcriptional response. In conclusion, we propose that the assembly of aggregation-like foci, PACs in fission yeast, is a crucial PQC strategy during heat stress, and that the Hsp40 chaperone Mas5 is required for PAC assembly and connects physiological and heat-shock triggered PQC.
Collapse
Affiliation(s)
- Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|