1
|
Abstract
Adipose tissue exhibits a remarkable capacity to expand, contract, and remodel in response to changes in physiological and environmental conditions. Here, we describe recent advances in our understanding of how functionally distinct tissue-resident mesenchymal stromal cell subpopulations orchestrate several aspects of physiological and pathophysiological adipose tissue remodeling, with a particular focus on the adaptations that occur in response to changes in energy surplus and environmental temperature. The study of adipose tissue remodeling provides a vehicle to understand the functional diversity of stromal cells and offers a lens through which several generalizable aspects of tissue reorganization can be readily observed.
Collapse
Affiliation(s)
- Jessica Cannavino
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| | - Rana K Gupta
- Department of Medicine, Division of Endocrinology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, North Carolina 27701, USA
| |
Collapse
|
2
|
Liu Q, Long Q, Zhao J, Wu W, Lin Z, Sun W, Gu P, Deng T, Loomes KM, Wu D, Kong APS, Zhou J, Cheng AS, Hui HX. Cold-Induced Reprogramming of Subcutaneous White Adipose Tissue Assessed by Single-Cell and Single-Nucleus RNA Sequencing. RESEARCH (WASHINGTON, D.C.) 2023; 6:0182. [PMID: 37398933 PMCID: PMC10308956 DOI: 10.34133/research.0182] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023]
Abstract
Adipose browning has demonstrated therapeutic potentials in several diseases. Here, by conducting transcriptomic profiling at the single-cell and single-nucleus resolution, we reconstituted the cellular atlas in mouse inguinal subcutaneous white adipose tissue (iWAT) at thermoneutrality or chronic cold condition. All major nonimmune cells within the iWAT, including adipose stem and progenitor cells (ASPCs), mature adipocytes, endothelial cells, Schwann cells, and smooth muscle cells, were recovered, allowing us to uncover an overall and detailed blueprint for transcriptomes and intercellular cross-talks and the dynamics during white adipose tissue brown remodeling. Our findings also unravel the existence of subpopulations in mature adipocytes, ASPCs, and endothelial cells, as well as new insights on their interconversion and reprogramming in response to cold. The adipocyte subpopulation competent of major histocompatibility complex class II (MHCII) antigen presentation is potentiated. Furthermore, a subcluster of ASPC with CD74 expression was identified as the precursor of this MHCII+ adipocyte. Beige adipocytes are transdifferented from preexisting lipid generating adipocytes, which exhibit developmental trajectory from de novo differentiation of amphiregulin cells (Aregs). Two distinct immune-like endothelial subpopulations are present in iWAT and are responsive to cold. Our data reveal fundamental changes during cold-evoked adipose browning.
Collapse
Affiliation(s)
- Qing Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiaoyun Long
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayu Zhao
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Wenjie Wu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zexin Lin
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wei Sun
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ping Gu
- Department of Endocrinology, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Immunology Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kerry Martin Loomes
- School of Biological Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Donghai Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Alice P. S. Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Jingying Zhou
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Alfred S. Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hannah Xiaoyan Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Maniyadath B, Zhang Q, Gupta RK, Mandrup S. Adipose tissue at single-cell resolution. Cell Metab 2023; 35:386-413. [PMID: 36889280 PMCID: PMC10027403 DOI: 10.1016/j.cmet.2023.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Adipose tissue exhibits remarkable plasticity with capacity to change in size and cellular composition under physiological and pathophysiological conditions. The emergence of single-cell transcriptomics has rapidly transformed our understanding of the diverse array of cell types and cell states residing in adipose tissues and has provided insight into how transcriptional changes in individual cell types contribute to tissue plasticity. Here, we present a comprehensive overview of the cellular atlas of adipose tissues focusing on the biological insight gained from single-cell and single-nuclei transcriptomics of murine and human adipose tissues. We also offer our perspective on the exciting opportunities for mapping cellular transitions and crosstalk, which have been made possible by single-cell technologies.
Collapse
Affiliation(s)
- Babukrishna Maniyadath
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Qianbin Zhang
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
5
|
Qi Y, Hui XH. The Single-Cell Revelation of Thermogenic Adipose Tissue. Mol Cells 2022; 45:673-684. [PMID: 36254709 PMCID: PMC9589375 DOI: 10.14348/molcells.2022.0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022] Open
Abstract
The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immuno-metabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The "re-discovery" of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.
Collapse
Affiliation(s)
- Yue Qi
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Hannah Hui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Ma Y, Jun H, Wu J. Immune cell cholinergic signaling in adipose thermoregulation and immunometabolism. Trends Immunol 2022; 43:718-727. [PMID: 35931611 PMCID: PMC9727785 DOI: 10.1016/j.it.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Research focusing on adipose immunometabolism has been expanded from inflammation in white fat during obesity development to immune cell function regulating thermogenic fat, energy expenditure, and systemic metabolism. This opinion discusses our current understanding of how resident immune cells within the thermogenic fat niche may regulate whole-body energy homeostasis. Furthermore, various types of immune cells can synthesize acetylcholine (ACh) and regulate important physiological functions. We highlight a unique subset of cholinergic macrophages within subcutaneous adipose tissue, termed cholinergic adipose macrophages (ChAMs); these macrophages interact with beige adipocytes through cholinergic receptor nicotinic alpha 2 subunit (CHRNA2) signaling to induce adaptive thermogenesis. We posit that these newly identified thermoregulatory macrophages may broaden our view of immune system functions for maintaining metabolic homeostasis and potentially treating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Yingxu Ma
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Heejin Jun
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jun Wu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Lee S, Benvie AM, Park HG, Spektor R, Harlan B, Brenna JT, Berry DC, Soloway PD. Remodeling of gene regulatory networks underlying thermogenic stimuli-induced adipose beiging. Commun Biol 2022; 5:584. [PMID: 35701601 PMCID: PMC9197980 DOI: 10.1038/s42003-022-03531-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/23/2022] [Indexed: 12/11/2022] Open
Abstract
Beige adipocytes are induced by cold temperatures or β3-adrenergic receptor (Adrb3) agonists. They create heat through glucose and fatty acid (FA) oxidation, conferring metabolic benefits. The distinct and shared mechanisms by which these treatments induce beiging are unknown. Here, we perform single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) on adipose tissue from mice exposed to cold or an Adrb3 agonist to identify cellular and chromatin accessibility dynamics during beiging. Both stimuli induce chromatin remodeling that influence vascularization and inflammation in adipose. Beige adipocytes from cold-exposed mice have increased accessibility at genes regulating glycolytic processes, whereas Adrb3 activation increases cAMP responses. While both thermogenic stimuli increase accessibility at genes regulating thermogenesis, lipogenesis, and beige adipocyte development, the kinetics and magnitudes of the changes are distinct for the stimuli. Accessibility changes at lipogenic genes are linked to functional changes in lipid composition of adipose. Both stimuli tend to decrease the proportion of palmitic acids, a saturated FA in adipose. However, Adrb3 activation increases the proportion of monounsaturated FAs, whereas cold increases the proportion of polyunsaturated FAs. These findings reveal common and distinct mechanisms of cold and Adrb3 induced beige adipocyte biogenesis, and identify unique functional consequences of manipulating these pathways in vivo.
Collapse
Affiliation(s)
- Seoyeon Lee
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
| | - Hui Gyu Park
- Dell Pediatric Research Institute, Departments of Chemistry, Pediatrics, and Nutrition, Dell Medical School and the College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Roman Spektor
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, NY, USA
| | - Blaine Harlan
- Field of Genetics, Genomics, and Development, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, NY, USA
| | - J Thomas Brenna
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
- Dell Pediatric Research Institute, Departments of Chemistry, Pediatrics, and Nutrition, Dell Medical School and the College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA
| | - Paul D Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, NY, USA.
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, NY, USA.
| |
Collapse
|
8
|
Shan B, Barker CS, Shao M, Zhang Q, Gupta RK, Wu Y. Multilayered omics reveal sex- and depot-dependent adipose progenitor cell heterogeneity. Cell Metab 2022; 34:783-799.e7. [PMID: 35447091 PMCID: PMC9986218 DOI: 10.1016/j.cmet.2022.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 01/17/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) has revealed that adult white adipose tissue (WAT) harbors functionally diverse subpopulations of mesenchymal stromal cells that differentially impact tissue plasticity. To date, the molecular basis of this cellular heterogeneity has not been fully defined. Here, we describe a multilayered omics approach to dissect adipose progenitor cell heterogeneity in three dimensions: progenitor subpopulation, sex, and anatomical localization. We applied state-of-the-art mass spectrometry methods to quantify 4,870 proteins in eight different stromal cell populations from perigonadal and inguinal WAT of male and female mice and acquired transcript expression levels of 15,477 genes using RNA-seq. Our data unveil molecular signatures defining sex differences in preadipocyte differentiation and identify regulatory pathways that functionally distinguish adipose progenitor subpopulations. This multilayered omics analysis, freely accessible at http://preadprofiler.net/, provides unprecedented insights into adipose stromal cell heterogeneity and highlights the benefit of complementary proteomics to support findings from scRNA-seq studies.
Collapse
Affiliation(s)
- Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Clive S Barker
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
9
|
Duerre DJ, Galmozzi A. Deconstructing Adipose Tissue Heterogeneity One Cell at a Time. Front Endocrinol (Lausanne) 2022; 13:847291. [PMID: 35399946 PMCID: PMC8990929 DOI: 10.3389/fendo.2022.847291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/28/2022] [Indexed: 12/26/2022] Open
Abstract
As a central coordinator of physiologic metabolism, adipose tissue has long been appreciated as a highly plastic organ that dynamically responds to environmental cues. Once thought of as a homogenous storage depot, recent advances have enabled deep characterizations of the underlying structure and composition of adipose tissue depots. As the obesity and metabolic disease epidemics continue to accelerate due to modern lifestyles and an aging population, elucidation of the underlying mechanisms that control adipose and systemic homeostasis are of critical importance. Within the past decade, the emergence of deep cell profiling at tissue- and, recently, single-cell level has furthered our understanding of the complex dynamics that contribute to tissue function and their implications in disease development. Although many paradigm-shifting findings may lie ahead, profound advances have been made to forward our understanding of the adipose tissue niche in both health and disease. Now widely accepted as a highly heterogenous organ with major roles in metabolic homeostasis, endocrine signaling, and immune function, the study of adipose tissue dynamics has reached a new frontier. In this review, we will provide a synthesis of the latest advances in adipose tissue biology made possible by the use of single-cell technologies, the impact of epigenetic mechanisms on adipose function, and suggest what next steps will further our understanding of the role that adipose tissue plays in systemic physiology.
Collapse
Affiliation(s)
- Dylan J. Duerre
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| | - Andrea Galmozzi
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
10
|
Rabhi N, Desevin K, Belkina AC, Tilston-Lunel A, Varelas X, Layne MD, Farmer SR. Obesity-induced senescent macrophages activate a fibrotic transcriptional program in adipocyte progenitors. Life Sci Alliance 2022; 5:5/5/e202101286. [PMID: 35181634 PMCID: PMC8860101 DOI: 10.26508/lsa.202101286] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
This study demonstrates that senescent CD9+ macrophages in obese visceral fat of mice secrete osteopontin that promotes ECM deposition by adipogenic progenitor cells expressing Pdgfra and Pdgfrb. Adipose tissue fibrosis is regulated by the chronic and progressive metabolic imbalance caused by differences in caloric intake and energy expenditure. By exploring the cellular heterogeneity within fibrotic adipose tissue, we demonstrate that early adipocyte progenitor cells expressing both platelet-derived growth factor receptor (PDGFR) α and β are the major contributors to extracellular matrix deposition. We show that the fibrotic program is promoted by senescent macrophages. These macrophages were enriched in the fibrotic stroma and exhibit a distinct expression profile. Furthermore, we demonstrate that these cells display a blunted phagocytotic capacity and acquire a senescence-associated secretory phenotype. Finally, we determined that osteopontin, which was expressed by senescent macrophages in the fibrotic environment promoted progenitor cell proliferation, fibrotic gene expression, and inhibited adipogenesis. Our work reveals that obesity promotes macrophage senescence and provides a conceptual framework for the discovery of rational therapeutic targets for metabolic and inflammatory disease associated with obesity.
Collapse
Affiliation(s)
- Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Kathleen Desevin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Anna C Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, Boston, MA, USA.,Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Tilston-Lunel
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Biagi CAO, Cury SS, Alves CP, Rabhi N, Silva WA, Farmer SR, Carvalho RF, Batista ML. Multidimensional Single-Nuclei RNA-Seq Reconstruction of Adipose Tissue Reveals Adipocyte Plasticity Underlying Thermogenic Response. Cells 2021; 10:cells10113073. [PMID: 34831295 PMCID: PMC8618495 DOI: 10.3390/cells10113073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue has been classified based on its morphology and function as white, brown, or beige/brite. It plays an essential role as a regulator of systemic metabolism through paracrine and endocrine signals. Recently, multiple adipocyte subtypes have been revealed using RNA sequencing technology, going beyond simply defined morphology but also by their cellular origin, adaptation to metabolic stress, and plasticity. Here, we performed an in-depth analysis of publicly available single-nuclei RNAseq from adipose tissue and utilized a workflow template to characterize adipocyte plasticity, heterogeneity, and secretome profiles. The reanalyzed dataset led to the identification of different subtypes of adipocytes including three subpopulations of thermogenic adipocytes, and provided a characterization of distinct transcriptional profiles along the adipocyte trajectory under thermogenic challenges. This study provides a useful resource for further investigations regarding mechanisms related to adipocyte plasticity and trans-differentiation.
Collapse
Affiliation(s)
- Carlos Alberto Oliveira Biagi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-140, Brazil; (C.A.O.B.J.); (W.A.S.J.)
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto 14051-140, Brazil
- Institute for Cancer Research, IPEC, Guarapuava 85100-000, Brazil
| | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Cleidson Pádua Alves
- Department of Translational Genomics, Medical Faculty, University of Cologne, 50923 Cologne, Germany;
| | - Nabil Rabhi
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA 02215, USA; (N.R.); (S.R.F.)
| | - Wilson Araujo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-140, Brazil; (C.A.O.B.J.); (W.A.S.J.)
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Ribeirão Preto 14051-140, Brazil
| | - Stephen R. Farmer
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA 02215, USA; (N.R.); (S.R.F.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
- Correspondence: (R.F.C.); (M.L.B.J.)
| | - Miguel Luiz Batista
- Department of Biochemistry, School of Medicine, Boston University, Boston, MA 02215, USA; (N.R.); (S.R.F.)
- Department of Integrated Biotechnology, University of Mogi das Cruzes, São Paulo 08747-000, Brazil
- Correspondence: (R.F.C.); (M.L.B.J.)
| |
Collapse
|
12
|
Rabhi N, Farmer SR. Unraveling the complexity of thermogenic remodeling of white fat reveals potential antiobesity therapies. Genes Dev 2021; 35:1395-1397. [PMID: 34725126 PMCID: PMC8559673 DOI: 10.1101/gad.349053.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this Outlook, Rabhi and Farmer discuss studies from Shao et al. (in this issue) and Shan et al. (in the previous issue) that advance our understanding of both cell–cell interactions and molecular mechanisms governing beige adipocyte appearance and maintenance. Adipose tissue is a complex organ consisting of a mixture of mature adipocytes and stromal vascular cells. It displays a remarkable ability to adapt to environmental and dietary cues by changing its morphology and metabolic capacity. This plasticity is demonstrated by the emergence of interspersed thermogenic beige adipocytes within white depots in response to catecholamines secretion. Coordinated cellular interaction between different cell types within the tissue and a fine-tuned transcriptional program synergistically take place to promote beige remodeling. However, both cell–cell interactions and molecular mechanisms governing beige adipocyte appearance and maintenance are poorly understood. In this and the previous issue of Genes & Development, Shao and colleagues (pp. 1461–1474) and Shan and colleagues (pp. 1333–1338) advance our understanding of these issues and, in doing so, highlight potential therapeutic strategies to combat obesity-associated diseases.
Collapse
Affiliation(s)
- Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| |
Collapse
|
13
|
Agarwal N, Iyer D, Saha P, Cox AR, Xia Y, Utay NS, Somasundaram A, Schubert U, Lake JE, Hartig SM, Balasubramanyam A. HIV-1 Viral Protein R Couples Metabolic Inflexibility With White Adipose Tissue Thermogenesis. Diabetes 2021; 70:2014-2025. [PMID: 34233931 PMCID: PMC8576429 DOI: 10.2337/db20-0888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 06/29/2021] [Indexed: 11/13/2022]
Abstract
Persons living with HIV (PLWH) manifest chronic disorders of brown and white adipose tissues that lead to diabetes and metabolic syndrome. The mechanisms that link viral factors to defective adipose tissue function and abnormal energy balance in PLWH remain incompletely understood. Here, we explored how the HIV accessory protein viral protein R (Vpr) contributes to adaptive thermogenesis in two mouse models and human adipose tissues. Uncoupling protein 1 (UCP1) gene expression was strongly increased in subcutaneous white adipose tissue (WAT) biopsy specimens from PLWH and in subcutaneous WAT of the Vpr mice, with nearly equivalent mRNA copy number. Histology and functional studies confirmed beige transformation in subcutaneous but not visceral WAT in the Vpr mice. Measurements of energy balance indicated Vpr mice displayed metabolic inflexibility and could not shift efficiently from carbohydrate to fat metabolism during day-night cycles. Furthermore, Vpr mice showed a marked inability to defend body temperature when exposed to 4°C. Importantly, Vpr couples higher tissue catecholamine levels with UCP1 expression independent of β-adrenergic receptors. Our data reveal surprising deficits of adaptive thermogenesis that drive metabolic inefficiency in HIV-1 Vpr mouse models, providing an expanded role for viral factors in the pathogenesis of metabolic disorders in PLWH.
Collapse
Affiliation(s)
- Neeti Agarwal
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
| | - Dinakar Iyer
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Pradip Saha
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
| | - Aaron R Cox
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
| | - Yan Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Netanya S Utay
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX
| | - Anoma Somasundaram
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX
| | | | - Jordan E Lake
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, TX
| | - Sean M Hartig
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Ashok Balasubramanyam
- Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, TX
| |
Collapse
|