1
|
Jin J, Wu Y, Cao P, Zheng X, Zhang Q, Chen Y. Potential and challenge in accelerating high-value conversion of CO 2 in microbial electrosynthesis system via data-driven approach. BIORESOURCE TECHNOLOGY 2024; 412:131380. [PMID: 39214179 DOI: 10.1016/j.biortech.2024.131380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Microbial electrosynthesis for CO2 utilization (MESCU) producing valuable chemicals with high energy density has garnered attention due to its long-term stability and high coulombic efficiency. The data-driven approaches offer a promising avenue by leveraging existing data to uncover the underlying patterns. This comprehensive review firstly uncovered the potentials of utilizing data-driven approaches to enhance high-value conversion of CO2 via MESCU. Firstly, critical challenges of MESCU advancing have been identified, including reactor configuration, cathode design, and microbial analysis. Subsequently, the potential of data-driven approaches to tackle the corresponding challenges, encompassing the identification of pivotal parameters governing reactor setup and cathode design, alongside the decipheration of omics data derived from microbial communities, have been discussed. Correspondingly, the future direction of data-driven approaches in assisting the application of MESCU has been addressed. This review offers guidance and theoretical support for future data-driven applications to accelerate MESCU research and potential industrialization.
Collapse
Affiliation(s)
- Jiasheng Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Peiyu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Qingran Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Todhunter ME, Jubair S, Verma R, Saqe R, Shen K, Duffy B. Artificial intelligence and machine learning applications for cultured meat. Front Artif Intell 2024; 7:1424012. [PMID: 39381621 PMCID: PMC11460582 DOI: 10.3389/frai.2024.1424012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Cultured meat has the potential to provide a complementary meat industry with reduced environmental, ethical, and health impacts. However, major technological challenges remain which require time-and resource-intensive research and development efforts. Machine learning has the potential to accelerate cultured meat technology by streamlining experiments, predicting optimal results, and reducing experimentation time and resources. However, the use of machine learning in cultured meat is in its infancy. This review covers the work available to date on the use of machine learning in cultured meat and explores future possibilities. We address four major areas of cultured meat research and development: establishing cell lines, cell culture media design, microscopy and image analysis, and bioprocessing and food processing optimization. In addition, we have included a survey of datasets relevant to CM research. This review aims to provide the foundation necessary for both cultured meat and machine learning scientists to identify research opportunities at the intersection between cultured meat and machine learning.
Collapse
Affiliation(s)
| | - Sheikh Jubair
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Ruchika Verma
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Rikard Saqe
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Kevin Shen
- Department of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
3
|
Kong Y, Chen H, Huang X, Chang L, Yang B, Chen W. Precise metabolic modeling in post-omics era: accomplishments and perspectives. Crit Rev Biotechnol 2024:1-19. [PMID: 39198033 DOI: 10.1080/07388551.2024.2390089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Microbes have been extensively utilized for their sustainable and scalable properties in synthesizing desired bio-products. However, insufficient knowledge about intracellular metabolism has impeded further microbial applications. The genome-scale metabolic models (GEMs) play a pivotal role in facilitating a global understanding of cellular metabolic mechanisms. These models enable rational modification by exploring metabolic pathways and predicting potential targets in microorganisms, enabling precise cell regulation without experimental costs. Nonetheless, simplified GEM only considers genome information and network stoichiometry while neglecting other important bio-information, such as enzyme functions, thermodynamic properties, and kinetic parameters. Consequently, uncertainties persist particularly when predicting microbial behaviors in complex and fluctuant systems. The advent of the omics era with its massive quantification of genes, proteins, and metabolites under various conditions has led to the flourishing of multi-constrained models and updated algorithms with improved predicting power and broadened dimension. Meanwhile, machine learning (ML) has demonstrated exceptional analytical and predictive capacities when applied to training sets of biological big data. Incorporating the discriminant strength of ML with GEM facilitates mechanistic modeling efficiency and improves predictive accuracy. This paper provides an overview of research innovations in the GEM, including multi-constrained modeling, analytical approaches, and the latest applications of ML, which may contribute comprehensive knowledge toward genetic refinement, strain development, and yield enhancement for a broad range of biomolecules.
Collapse
Affiliation(s)
- Yawen Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xinlei Huang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Lulu Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
4
|
Turanli B, Gulfidan G, Aydogan OO, Kula C, Selvaraj G, Arga KY. Genome-scale metabolic models in translational medicine: the current status and potential of machine learning in improving the effectiveness of the models. Mol Omics 2024; 20:234-247. [PMID: 38444371 DOI: 10.1039/d3mo00152k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The genome-scale metabolic model (GEM) has emerged as one of the leading modeling approaches for systems-level metabolic studies and has been widely explored for a broad range of organisms and applications. Owing to the development of genome sequencing technologies and available biochemical data, it is possible to reconstruct GEMs for model and non-model microorganisms as well as for multicellular organisms such as humans and animal models. GEMs will evolve in parallel with the availability of biological data, new mathematical modeling techniques and the development of automated GEM reconstruction tools. The use of high-quality, context-specific GEMs, a subset of the original GEM in which inactive reactions are removed while maintaining metabolic functions in the extracted model, for model organisms along with machine learning (ML) techniques could increase their applications and effectiveness in translational research in the near future. Here, we briefly review the current state of GEMs, discuss the potential contributions of ML approaches for more efficient and frequent application of these models in translational research, and explore the extension of GEMs to integrative cellular models.
Collapse
Affiliation(s)
- Beste Turanli
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gizem Gulfidan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ozge Onluturk Aydogan
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
| | - Ceyda Kula
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Gurudeeban Selvaraj
- Concordia University, Centre for Research in Molecular Modeling & Department of Chemistry and Biochemistry, Quebec, Canada
- Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospital, Department of Biomaterials, Bioinformatics Unit, Chennai, India
| | - Kazim Yalcin Arga
- Marmara University, Faculty of Engineering, Department of Bioengineering, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
- Marmara University, Genetic and Metabolic Diseases Research and Investigation Center, Istanbul, Turkey
| |
Collapse
|
5
|
Goshisht MK. Machine Learning and Deep Learning in Synthetic Biology: Key Architectures, Applications, and Challenges. ACS OMEGA 2024; 9:9921-9945. [PMID: 38463314 PMCID: PMC10918679 DOI: 10.1021/acsomega.3c05913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Machine learning (ML), particularly deep learning (DL), has made rapid and substantial progress in synthetic biology in recent years. Biotechnological applications of biosystems, including pathways, enzymes, and whole cells, are being probed frequently with time. The intricacy and interconnectedness of biosystems make it challenging to design them with the desired properties. ML and DL have a synergy with synthetic biology. Synthetic biology can be employed to produce large data sets for training models (for instance, by utilizing DNA synthesis), and ML/DL models can be employed to inform design (for example, by generating new parts or advising unrivaled experiments to perform). This potential has recently been brought to light by research at the intersection of engineering biology and ML/DL through achievements like the design of novel biological components, best experimental design, automated analysis of microscopy data, protein structure prediction, and biomolecular implementations of ANNs (Artificial Neural Networks). I have divided this review into three sections. In the first section, I describe predictive potential and basics of ML along with myriad applications in synthetic biology, especially in engineering cells, activity of proteins, and metabolic pathways. In the second section, I describe fundamental DL architectures and their applications in synthetic biology. Finally, I describe different challenges causing hurdles in the progress of ML/DL and synthetic biology along with their solutions.
Collapse
Affiliation(s)
- Manoj Kumar Goshisht
- Department of Chemistry, Natural and
Applied Sciences, University of Wisconsin—Green
Bay, Green
Bay, Wisconsin 54311-7001, United States
| |
Collapse
|
6
|
Kugler A, Stensjö K. Machine learning predicts system-wide metabolic flux control in cyanobacteria. Metab Eng 2024; 82:171-182. [PMID: 38395194 DOI: 10.1016/j.ymben.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
7
|
Babele PK, Srivastava A, Young JD. Metabolic flux phenotyping of secondary metabolism in cyanobacteria. Trends Microbiol 2023; 31:1118-1130. [PMID: 37331829 DOI: 10.1016/j.tim.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Cyanobacteria generate energy from photosynthesis and produce various secondary metabolites with diverse commercial and pharmaceutical applications. Unique metabolic and regulatory pathways in cyanobacteria present new challenges for researchers to enhance their product yields, titers, and rates. Therefore, further advancements are critically needed to establish cyanobacteria as a preferred bioproduction platform. Metabolic flux analysis (MFA) quantitatively determines the intracellular flows of carbon within complex biochemical networks, which elucidate the control of metabolic pathways by transcriptional, translational, and allosteric regulatory mechanisms. The emerging field of systems metabolic engineering (SME) involves the use of MFA and other omics technologies to guide the rational development of microbial production strains. This review highlights the potential of MFA and SME to optimize the production of cyanobacterial secondary metabolites and discusses the technical challenges that lie ahead.
Collapse
Affiliation(s)
- Piyoosh K Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University Jhansi, 284003, Uttar Pradesh, India.
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014 Jyväskylä, Finland
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, PMB 351604, Nashville, TN 37235-1604, USA.
| |
Collapse
|
8
|
Gonçalves DM, Henriques R, Costa RS. Predicting metabolic fluxes from omics data via machine learning: Moving from knowledge-driven towards data-driven approaches. Comput Struct Biotechnol J 2023; 21:4960-4973. [PMID: 37876626 PMCID: PMC10590844 DOI: 10.1016/j.csbj.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023] Open
Abstract
The accurate prediction of phenotypes in microorganisms is a main challenge for systems biology. Genome-scale models (GEMs) are a widely used mathematical formalism for predicting metabolic fluxes using constraint-based modeling methods such as flux balance analysis (FBA). However, they require prior knowledge of the metabolic network of an organism and appropriate objective functions, often hampering the prediction of metabolic fluxes under different conditions. Moreover, the integration of omics data to improve the accuracy of phenotype predictions in different physiological states is still in its infancy. Here, we present a novel approach for predicting fluxes under various conditions. We explore the use of supervised machine learning (ML) models using transcriptomics and/or proteomics data and compare their performance against the standard parsimonious FBA (pFBA) approach using case studies of Escherichia coli organism as an example. Our results show that the proposed omics-based ML approach is promising to predict both internal and external metabolic fluxes with smaller prediction errors in comparison to the pFBA approach. The code, data, and detailed results are available at the project's repository[1].
Collapse
Affiliation(s)
- Daniel M. Gonçalves
- INESC-ID, Rua Alves Redol, 9, Lisbon, 1000-029, Portugal
- Instituto Superior Técnico, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| | - Rui Henriques
- INESC-ID, Rua Alves Redol, 9, Lisbon, 1000-029, Portugal
- Instituto Superior Técnico, Av. Rovisco Pais, 1, Lisbon, 1049-001, Portugal
| | - Rafael S. Costa
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
9
|
Madsen MA, Semerdzhiev S, Twigg JD, Moss C, Bavington CD, Amtmann A. Environmental modulation of exopolysaccharide production in the cyanobacterium Synechocystis 6803. Appl Microbiol Biotechnol 2023; 107:6121-6134. [PMID: 37552253 PMCID: PMC10485101 DOI: 10.1007/s00253-023-12697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Microorganisms produce extracellular polymeric substances (EPS, also known as exopolysaccharides) of diverse composition and structure. The biochemical and biophysical properties of these biopolymers enable a wide range of industrial applications. EPS from cyanobacteria are particularly versatile as they incorporate a larger number and variety of building blocks and adopt more complex structures than EPS from other organisms. However, the genetic makeup and regulation of EPS biosynthetic pathways in cyanobacteria are poorly understood. Here, we measured the effect of changing culture media on titre and composition of EPS released by Synechocystis sp. PCC 6803, and we integrated this information with transcriptomic data. Across all conditions, daily EPS productivity of individual cells was highest in the early growth phase, but the total amount of EPS obtained from the cultures was highest in the later growth phases due to accumulation. Lowering the magnesium concentration in the media enhanced per-cell productivity but the produced EPS had a lower total sugar content. Levels of individual monosaccharides correlated with specific culture media components, e.g. xylose with sulfur, glucose and N-acetyl-galactosamine with NaCl. Comparison with RNA sequencing data suggests a Wzy-dependent biosynthetic pathway and a protective role for xylose-rich EPS. This multi-level analysis offers a handle to link individual genes to the dynamic modulation of a complex biopolymer. KEY POINTS: • Synechocystis exopolysaccharide amount and composition depends on culture condition • Production rate and sugar content can be modulated by Mg and S respectively • Wzy-dependent biosynthetic pathway and protective role proposed for xylose-rich EPS.
Collapse
Affiliation(s)
- Mary Ann Madsen
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Stefan Semerdzhiev
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Jordan D Twigg
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Claire Moss
- GlycoMar Ltd, Malin House, European Marine Science Park, Oban, Scotland, PA37 1SZ, UK
| | - Charles D Bavington
- GlycoMar Ltd, Malin House, European Marine Science Park, Oban, Scotland, PA37 1SZ, UK
| | - Anna Amtmann
- School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
10
|
Manochkumar J, Cherukuri AK, Kumar RS, Almansour AI, Ramamoorthy S, Efferth T. A critical review of machine-learning for "multi-omics" marine metabolite datasets. Comput Biol Med 2023; 165:107425. [PMID: 37696182 DOI: 10.1016/j.compbiomed.2023.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
During the last decade, genomic, transcriptomic, proteomic, metabolomic, and other omics datasets have been generated for a wide range of marine organisms, and even more are still on the way. Marine organisms possess unique and diverse biosynthetic pathways contributing to the synthesis of novel secondary metabolites with significant bioactivities. As marine organisms have a greater tendency to adapt to stressed environmental conditions, the chance to identify novel bioactive metabolites with potential biotechnological application is very high. This review presents a comprehensive overview of the available "-omics" and "multi-omics" approaches employed for characterizing marine metabolites along with novel data integration tools. The need for the development of machine-learning algorithms for "multi-omics" approaches is briefly discussed. In addition, the challenges involved in the analysis of "multi-omics" data and recommendations for conducting "multi-omics" study were discussed.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Aswani Kumar Cherukuri
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
11
|
Qiu S, Yang A, Zeng H. Flux balance analysis-based metabolic modeling of microbial secondary metabolism: Current status and outlook. PLoS Comput Biol 2023; 19:e1011391. [PMID: 37619239 PMCID: PMC10449171 DOI: 10.1371/journal.pcbi.1011391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
In microorganisms, different from primary metabolism for cellular growth, secondary metabolism is for ecological interactions and stress responses and an important source of natural products widely used in various areas such as pharmaceutics and food additives. With advancements of sequencing technologies and bioinformatics tools, a large number of biosynthetic gene clusters of secondary metabolites have been discovered from microbial genomes. However, due to challenges from the difficulty of genome-scale pathway reconstruction and the limitation of conventional flux balance analysis (FBA) on secondary metabolism, the quantitative modeling of secondary metabolism is poorly established, in contrast to that of primary metabolism. This review first discusses current efforts on the reconstruction of secondary metabolic pathways in genome-scale metabolic models (GSMMs), as well as related FBA-based modeling techniques. Additionally, potential extensions of FBA are suggested to improve the prediction accuracy of secondary metabolite production. As this review posits, biosynthetic pathway reconstruction for various secondary metabolites will become automated and a modeling framework capturing secondary metabolism onset will enhance the predictive power. Expectedly, an improved FBA-based modeling workflow will facilitate quantitative study of secondary metabolism and in silico design of engineering strategies for natural product production.
Collapse
Affiliation(s)
- Sizhe Qiu
- School of Food and Health, Beijing Technology and Business University, Bejing, China
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Bejing, China
| |
Collapse
|
12
|
A General Hybrid Modeling Framework for Systems Biology Applications: Combining Mechanistic Knowledge with Deep Neural Networks under the SBML Standard. AI 2023. [DOI: 10.3390/ai4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
In this paper, a computational framework is proposed that merges mechanistic modeling with deep neural networks obeying the Systems Biology Markup Language (SBML) standard. Over the last 20 years, the systems biology community has developed a large number of mechanistic models that are currently stored in public databases in SBML. With the proposed framework, existing SBML models may be redesigned into hybrid systems through the incorporation of deep neural networks into the model core, using a freely available python tool. The so-formed hybrid mechanistic/neural network models are trained with a deep learning algorithm based on the adaptive moment estimation method (ADAM), stochastic regularization and semidirect sensitivity equations. The trained hybrid models are encoded in SBML and uploaded in model databases, where they may be further analyzed as regular SBML models. This approach is illustrated with three well-known case studies: the Escherichia coli threonine synthesis model, the P58IPK signal transduction model, and the Yeast glycolytic oscillations model. The proposed framework is expected to greatly facilitate the widespread use of hybrid modeling techniques for systems biology applications.
Collapse
|
13
|
Multi-dimensional experimental and computational exploration of metabolism pinpoints complex probiotic interactions. Metab Eng 2023; 76:120-132. [PMID: 36720400 DOI: 10.1016/j.ymben.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/13/2022] [Accepted: 01/21/2023] [Indexed: 01/29/2023]
Abstract
Multi-strain probiotics are widely regarded as effective products for improving gut microbiota stability and host health, providing advantages over single-strain probiotics. However, in general, it is unclear to what extent different strains would cooperate or compete for resources, and how the establishment of a common biofilm microenvironment could influence their interactions. In this work, we develop an integrative experimental and computational approach to comprehensively assess the metabolic functionality and interactions of probiotics across growth conditions. Our approach combines co-culture assays with genome-scale modelling of metabolism and multivariate data analysis, thus exploiting complementary data- and knowledge-driven systems biology techniques. To show the advantages of the proposed approach, we apply it to the study of the interactions between two widely used probiotic strains of Lactobacillus reuteri and Saccharomyces boulardii, characterising their production potential for compounds that can be beneficial to human health. Our results show that these strains can establish a mixed cooperative-antagonistic interaction best explained by competition for shared resources, with an increased individual exchange but an often decreased net production of amino acids and short-chain fatty acids. Overall, our work provides a strategy that can be used to explore microbial metabolic fingerprints of biotechnological interest, capable of capturing multifaceted equilibria even in simple microbial consortia.
Collapse
|
14
|
Quesnel A, Coles N, Angione C, Dey P, Polvikoski TM, Outeiro TF, Islam M, Khundakar AA, Filippou PS. Glycosylation spectral signatures for glioma grade discrimination using Raman spectroscopy. BMC Cancer 2023; 23:174. [PMID: 36809974 PMCID: PMC9942363 DOI: 10.1186/s12885-023-10588-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Gliomas are the most common brain tumours with the high-grade glioblastoma representing the most aggressive and lethal form. Currently, there is a lack of specific glioma biomarkers that would aid tumour subtyping and minimally invasive early diagnosis. Aberrant glycosylation is an important post-translational modification in cancer and is implicated in glioma progression. Raman spectroscopy (RS), a vibrational spectroscopic label-free technique, has already shown promise in cancer diagnostics. METHODS RS was combined with machine learning to discriminate glioma grades. Raman spectral signatures of glycosylation patterns were used in serum samples and fixed tissue biopsy samples, as well as in single cells and spheroids. RESULTS Glioma grades in fixed tissue patient samples and serum were discriminated with high accuracy. Discrimination between higher malignant glioma grades (III and IV) was achieved with high accuracy in tissue, serum, and cellular models using single cells and spheroids. Biomolecular changes were assigned to alterations in glycosylation corroborated by analysing glycan standards and other changes such as carotenoid antioxidant content. CONCLUSION RS combined with machine learning could pave the way for more objective and less invasive grading of glioma patients, serving as a useful tool to facilitate glioma diagnosis and delineate biomolecular glioma progression changes.
Collapse
Affiliation(s)
- Agathe Quesnel
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
| | - Nathan Coles
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
| | - Claudio Angione
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
- School of Computing, Engineering & Digital Technologies, Teesside University, Darlington, UK
- Centre for Digital Innovation, Teesside University, Darlington, UK
| | - Priyanka Dey
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PO1 2UP, Portsmouth, UK
| | - Tuomo M Polvikoski
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Meez Islam
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
| | - Ahmad A Khundakar
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, TS1 3BX, Middlesbrough, UK.
- National Horizons Centre, Teesside University, 38 John Dixon Ln, DL1 1HG, Darlington, UK.
| |
Collapse
|
15
|
Pinto J, Costa RS, Alexandre L, Ramos J, Oliveira R. SBML2HYB: a Python interface for SBML compatible hybrid modeling. Bioinformatics 2023; 39:6994184. [PMID: 36661327 PMCID: PMC9889961 DOI: 10.1093/bioinformatics/btad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
SUMMARY Here, we present sbml2hyb, an easy-to-use standalone Python tool that facilitates the conversion of existing mechanistic models of biological systems in Systems Biology Markup Language (SBML) into hybrid semiparametric models that combine mechanistic functions with machine learning (ML). The so-formed hybrid models can be trained and stored back in databases in SBML format. The tool supports a user-friendly export interface with an internal format validator. Two case studies illustrate the use of the sbml2hyb tool. Additionally, we describe HMOD, a new model format designed to support and facilitate hybrid models building. It aggregates the mechanistic model information with the ML information and follows as close as possible the SBML rules. We expect the sbml2hyb tool and HMOD to greatly facilitate the widespread usage of hybrid modeling techniques for biological systems analysis. AVAILABILITY AND IMPLEMENTATION The Python interface, source code and the example models used for the case studies are accessible at: https://github.com/r-costa/sbml2hyb. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | - Leonardo Alexandre
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal,INESC-ID, Lisboa, Portugal
| | - João Ramos
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| | - Rui Oliveira
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal
| |
Collapse
|
16
|
Sieow BFL, De Sotto R, Seet ZRD, Hwang IY, Chang MW. Synthetic Biology Meets Machine Learning. Methods Mol Biol 2023; 2553:21-39. [PMID: 36227537 DOI: 10.1007/978-1-0716-2617-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter outlines the myriad applications of machine learning (ML) in synthetic biology, specifically in engineering cell and protein activity, and metabolic pathways. Though by no means comprehensive, the chapter highlights several prominent computational tools applied in the field and their potential use cases. The examples detailed reinforce how ML algorithms can enhance synthetic biology research by providing data-driven insights into the behavior of living systems, even without detailed knowledge of their underlying mechanisms. By doing so, ML promises to increase the efficiency of research projects by modeling hypotheses in silico that can then be tested through experiments. While challenges related to training dataset generation and computational costs remain, ongoing improvements in ML tools are paving the way for smarter and more streamlined synthetic biology workflows that can be readily employed to address grand challenges across manufacturing, medicine, engineering, agriculture, and beyond.
Collapse
Affiliation(s)
- Brendan Fu-Long Sieow
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Singapore
| | - Ryan De Sotto
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi Ren Darren Seet
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Systems biology's role in leveraging microalgal biomass potential: Current status and future perspectives. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Ramos JRC, Oliveira GP, Dumas P, Oliveira R. Genome-scale modeling of Chinese hamster ovary cells by hybrid semi-parametric flux balance analysis. Bioprocess Biosyst Eng 2022; 45:1889-1904. [DOI: 10.1007/s00449-022-02795-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/30/2022] [Indexed: 11/28/2022]
Abstract
AbstractFlux balance analysis (FBA) is currently the standard method to compute metabolic fluxes in genome-scale networks. Several FBA extensions employing diverse objective functions and/or constraints have been published. Here we propose a hybrid semi-parametric FBA extension that combines mechanistic-level constraints (parametric) with empirical constraints (non-parametric) in the same linear program. A CHO dataset with 27 measured exchange fluxes obtained from 21 reactor experiments served to evaluate the method. The mechanistic constraints were deduced from a reduced CHO-K1 genome-scale network with 686 metabolites, 788 reactions and 210 degrees of freedom. The non-parametric constraints were obtained by principal component analysis of the flux dataset. The two types of constraints were integrated in the same linear program showing comparable computational cost to standard FBA. The hybrid FBA is shown to significantly improve the specific growth rate prediction under different constraints scenarios. A metabolically efficient cell growth feed targeting minimal byproducts accumulation was designed by hybrid FBA. It is concluded that integrating parametric and nonparametric constraints in the same linear program may be an efficient approach to reduce the solution space and to improve the predictive power of FBA methods when critical mechanistic information is missing.
Collapse
|
19
|
Enuh BM, Nural Yaman B, Tarzi C, Aytar Çelik P, Mutlu MB, Angione C. Whole-genome sequencing and genome-scale metabolic modeling of Chromohalobacter canadensis 85B to explore its salt tolerance and biotechnological use. Microbiologyopen 2022; 11:e1328. [PMID: 36314754 PMCID: PMC9597258 DOI: 10.1002/mbo3.1328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Salt tolerant organisms are increasingly being used for the industrial production of high-value biomolecules due to their better adaptability compared to mesophiles. Chromohalobacter canadensis is one of the early halophiles to show promising biotechnology potential, which has not been explored to date. Advanced high throughput technologies such as whole-genome sequencing allow in-depth insight into the potential of organisms while at the frontiers of systems biology. At the same time, genome-scale metabolic models (GEMs) enable phenotype predictions through a mechanistic representation of metabolism. Here, we sequence and analyze the genome of C. canadensis 85B, and we use it to reconstruct a GEM. We then analyze the GEM using flux balance analysis and validate it against literature data on C. canadensis. We show that C. canadensis 85B is a metabolically versatile organism with many features for stress and osmotic adaptation. Pathways to produce ectoine and polyhydroxybutyrates were also predicted. The GEM reveals the ability to grow on several carbon sources in a minimal medium and reproduce osmoadaptation phenotypes. Overall, this study reveals insights from the genome of C. canadensis 85B, providing genomic data and a draft GEM that will serve as the first steps towards a better understanding of its metabolism, for novel applications in industrial biotechnology.
Collapse
Affiliation(s)
- Blaise Manga Enuh
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
| | - Belma Nural Yaman
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Department of Biomedical Engineering, Faculty of Engineering and ArchitectureEskişehir Osmangazi UniversityEskişehirTurkey
| | - Chaimaa Tarzi
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
| | - Pınar Aytar Çelik
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Environmental Protection and Control ProgramEskişehir Osmangazi UniversityEskişehirTurkey
| | - Mehmet Burçin Mutlu
- Department of Biology, Faculty of ScienceEskisehir Technical UniversityEskisehirTurkey
| | - Claudio Angione
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
- Centre for Digital InnovationTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| |
Collapse
|
20
|
Du YH, Wang MY, Yang LH, Tong LL, Guo DS, Ji XJ. Optimization and Scale-Up of Fermentation Processes Driven by Models. Bioengineering (Basel) 2022; 9:bioengineering9090473. [PMID: 36135019 PMCID: PMC9495923 DOI: 10.3390/bioengineering9090473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
In the era of sustainable development, the use of cell factories to produce various compounds by fermentation has attracted extensive attention; however, industrial fermentation requires not only efficient production strains, but also suitable extracellular conditions and medium components, as well as scaling-up. In this regard, the use of biological models has received much attention, and this review will provide guidance for the rapid selection of biological models. This paper first introduces two mechanistic modeling methods, kinetic modeling and constraint-based modeling (CBM), and generalizes their applications in practice. Next, we review data-driven modeling based on machine learning (ML), and highlight the application scope of different learning algorithms. The combined use of ML and CBM for constructing hybrid models is further discussed. At the end, we also discuss the recent strategies for predicting bioreactor scale-up and culture behavior through a combination of biological models and computational fluid dynamics (CFD) models.
Collapse
Affiliation(s)
- Yuan-Hang Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min-Yu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin-Hui Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ling-Ling Tong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Dong-Sheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (D.-S.G.); (X.-J.J.)
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Correspondence: (D.-S.G.); (X.-J.J.)
| |
Collapse
|
21
|
Liao X, Ma H, Tang YJ. Artificial intelligence: a solution to involution of design–build–test–learn cycle. Curr Opin Biotechnol 2022; 75:102712. [DOI: 10.1016/j.copbio.2022.102712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/05/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
|
22
|
Transcriptomics Integrated with Metabolomics Reveals 2-Methoxy-1, 4-Naphthoquinone-Based Carbon Dots Induced Molecular Shifts in Penicillium italicum. J Fungi (Basel) 2022; 8:jof8050420. [PMID: 35628676 PMCID: PMC9145997 DOI: 10.3390/jof8050420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Penicillium italicum (P. italicum), a citrus blue mold, is a pathogenic fungus that greatly affects the postharvest quality of citrus fruits with significant economic loss. Our previous research showed that 2-methoxy-1, 4-naphthoquinone (MNQ) inhibited the growth of Penicillium italicum. However, the water dispersibility of MNQ will limit its further application. Herein, we synthesized MNQ-based carbon dots (2−CDs) with better water dispersibility, which showed a potential inhibitory effect on P. italicum (MIC = 2.8 μg/mL) better than that of MNQ (MIC = 5.0 μg/mL). Transcriptomics integrated with metabolomics reveals a total of 601 differentially enriched genes and 270 differentially accumulated metabolites that are co-mapped as disruptive activity on the cell cytoskeleton, glycolysis, and histone methylation. Furthermore, transmission electron microscopy analysis showed normal appearances and intracellular septum of P. italicum after treatment. These findings contribute tofurther understanding of the possible molecular action of 2−CDs.
Collapse
|
23
|
Sampaio M, Rocha M, Dias O. Exploring synergies between plant metabolic modelling and machine learning. Comput Struct Biotechnol J 2022; 20:1885-1900. [PMID: 35521559 PMCID: PMC9052043 DOI: 10.1016/j.csbj.2022.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022] Open
|
24
|
Angione C, Silverman E, Yaneske E. Using machine learning as a surrogate model for agent-based simulations. PLoS One 2022; 17:e0263150. [PMID: 35143521 PMCID: PMC8830643 DOI: 10.1371/journal.pone.0263150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/12/2022] [Indexed: 02/02/2023] Open
Abstract
In this proof-of-concept work, we evaluate the performance of multiple machine-learning methods as surrogate models for use in the analysis of agent-based models (ABMs). Analysing agent-based modelling outputs can be challenging, as the relationships between input parameters can be non-linear or even chaotic even in relatively simple models, and each model run can require significant CPU time. Surrogate modelling, in which a statistical model of the ABM is constructed to facilitate detailed model analyses, has been proposed as an alternative to computationally costly Monte Carlo methods. Here we compare multiple machine-learning methods for ABM surrogate modelling in order to determine the approaches best suited as a surrogate for modelling the complex behaviour of ABMs. Our results suggest that, in most scenarios, artificial neural networks (ANNs) and gradient-boosted trees outperform Gaussian process surrogates, currently the most commonly used method for the surrogate modelling of complex computational models. ANNs produced the most accurate model replications in scenarios with high numbers of model runs, although training times were longer than the other methods. We propose that agent-based modelling would benefit from using machine-learning methods for surrogate modelling, as this can facilitate more robust sensitivity analyses for the models while also reducing CPU time consumption when calibrating and analysing the simulation.
Collapse
Affiliation(s)
- Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, United Kingdom
- Healthcare Innovation Centre, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
- Centre for Digital Innovation, Teesside University, Middlesbrough, United Kingdom
| | - Eric Silverman
- Institute for Health and Wellbeing, University of Glasgow, Glasgow, United Kingdom
| | - Elisabeth Yaneske
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, United Kingdom
| |
Collapse
|
25
|
Vijayakumar S, Magazzù G, Moon P, Occhipinti A, Angione C. A Practical Guide to Integrating Multimodal Machine Learning and Metabolic Modeling. Methods Mol Biol 2022; 2399:87-122. [PMID: 35604554 DOI: 10.1007/978-1-0716-1831-8_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Complex, distributed, and dynamic sets of clinical biomedical data are collectively referred to as multimodal clinical data. In order to accommodate the volume and heterogeneity of such diverse data types and aid in their interpretation when they are combined with a multi-scale predictive model, machine learning is a useful tool that can be wielded to deconstruct biological complexity and extract relevant outputs. Additionally, genome-scale metabolic models (GSMMs) are one of the main frameworks striving to bridge the gap between genotype and phenotype by incorporating prior biological knowledge into mechanistic models. Consequently, the utilization of GSMMs as a foundation for the integration of multi-omic data originating from different domains is a valuable pursuit towards refining predictions. In this chapter, we show how cancer multi-omic data can be analyzed via multimodal machine learning and metabolic modeling. Firstly, we focus on the merits of adopting an integrative systems biology led approach to biomedical data mining. Following this, we propose how constraint-based metabolic models can provide a stable yet adaptable foundation for the integration of multimodal data with machine learning. Finally, we provide a step-by-step tutorial for the combination of machine learning and GSMMs, which includes: (i) tissue-specific constraint-based modeling; (ii) survival analysis using time-to-event prediction for cancer; and (iii) classification and regression approaches for multimodal machine learning. The code associated with the tutorial can be found at https://github.com/Angione-Lab/Tutorials_Combining_ML_and_GSMM .
Collapse
Affiliation(s)
- Supreeta Vijayakumar
- Computational Systems Biology and Data Analytics Research Group, Teesside University, Middlebrough, UK
| | - Giuseppe Magazzù
- Computational Systems Biology and Data Analytics Research Group, Teesside University, Middlebrough, UK
| | - Pradip Moon
- Computational Systems Biology and Data Analytics Research Group, Teesside University, Middlebrough, UK
| | - Annalisa Occhipinti
- Computational Systems Biology and Data Analytics Research Group, Middlebrough, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough, UK
| | - Claudio Angione
- Computational Systems Biology and Data Analytics Research Group, Teesside University, Middlebrough, UK.
- Centre for Digital Innovation, Teesside University, Middlesbrough, UK.
- Healthcare Innovation Centre, Teesside University, Middlesbrough, UK.
| |
Collapse
|
26
|
Wang Z, Peng X, Xia A, Shah AA, Huang Y, Zhu X, Zhu X, Liao Q. The role of machine learning to boost the bioenergy and biofuels conversion. BIORESOURCE TECHNOLOGY 2022; 343:126099. [PMID: 34626766 DOI: 10.1016/j.biortech.2021.126099] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The development and application of bioenergy and biofuels conversion technology can play a significant role for the production of renewable and sustainable energy sources in the future. However, the complexity of bioenergy systems and the limitations of human understanding make it difficult to build models based on experience or theory for accurate predictions. Recent developments in data science and machine learning (ML), can provide new opportunities. Accordingly, this critical review provides a deep insight into the application of ML in the bioenergy context. The latest advances in ML assisted bioenergy technology, including energy utilization of lignocellulosic biomass, microalgae cultivation, biofuels conversion and application, are reviewed in detail. The strengths and limitations of ML in bioenergy systems are comprehensively analysed. Moreover, we highlight the capabilities and potential of advanced ML methods when encountering multifarious tasks in the future prospects to advance a new generation of bioenergy and biofuels conversion technologies.
Collapse
Affiliation(s)
- Zhengxin Wang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xinggan Peng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Akeel A Shah
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
27
|
Vijayakumar S, Angione C. Protocol for hybrid flux balance, statistical, and machine learning analysis of multi-omic data from the cyanobacterium Synechococcus sp. PCC 7002. STAR Protoc 2021; 2:100837. [PMID: 34632416 PMCID: PMC8488602 DOI: 10.1016/j.xpro.2021.100837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Combining a computational framework for flux balance analysis with machine learning improves the accuracy of predicting metabolic activity across conditions, while enabling mechanistic interpretation. This protocol presents a guide to condition-specific metabolic modeling that integrates regularized flux balance analysis with machine learning approaches to extract key features from transcriptomic and fluxomic data. We demonstrate the protocol as applied to Synechococcus sp. PCC 7002; we also outline how it can be adapted to any species or community with available multi-omic data. For complete details on the use and execution of this protocol, please refer to Vijayakumar et al. (2020).
Collapse
Affiliation(s)
- Supreeta Vijayakumar
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, North Yorkshire TS1 3BX, UK
| | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, North Yorkshire TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
- Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK
| |
Collapse
|
28
|
Khaleghi MK, Savizi ISP, Lewis NE, Shojaosadati SA. Synergisms of machine learning and constraint-based modeling of metabolism for analysis and optimization of fermentation parameters. Biotechnol J 2021; 16:e2100212. [PMID: 34390201 DOI: 10.1002/biot.202100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/06/2022]
Abstract
Recent noteworthy advances in the development of high-performing microbial and mammalian strains have enabled the sustainable production of bio-economically valuable substances such as bio-compounds, biofuels, and biopharmaceuticals. However, to obtain an industrially viable mass-production scheme, much time and effort are required. The robust and rational design of fermentation processes requires analysis and optimization of different extracellular conditions and medium components, which have a massive effect on growth and productivity. In this regard, knowledge- and data-driven modeling methods have received much attention. Constraint-based modeling (CBM) is a knowledge-driven mathematical approach that has been widely used in fermentation analysis and optimization due to its capabilities of predicting the cellular phenotype from genotype through high-throughput means. On the other hand, machine learning (ML) is a data-driven statistical method that identifies the data patterns within sophisticated biological systems and processes, where there is inadequate knowledge to represent underlying mechanisms. Furthermore, ML models are becoming a viable complement to constraint-based models in a reciprocal manner when one is used as a pre-step of another. As a result, more predictable model is produced. This review highlights the applications of CBM and ML independently and the combination of these two approaches for analyzing and optimizing fermentation parameters. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohammad Karim Khaleghi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Iman Shahidi Pour Savizi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, USA.,Department of Pediatrics, University of California, San Diego, USA
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
29
|
Sahu A, Blätke MA, Szymański JJ, Töpfer N. Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput Struct Biotechnol J 2021; 19:4626-4640. [PMID: 34471504 PMCID: PMC8382995 DOI: 10.1016/j.csbj.2021.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The availability of multi-omics data sets and genome-scale metabolic models for various organisms provide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models and various data-integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models. However, both data and model size can hamper a straightforward biological interpretation of the estimated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with complementary data analysis and modeling techniques offers the potential to overcome these challenges. In particular machine learning approaches have emerged as the tool of choice for data reduction and selection of most important variables in big data sets. Kinetic models and formal languages can be used to simulate dynamic behavior. This review article provides an overview of integrative studies that combine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the mathematical aspects and biological applications of these integrated approaches and outline challenges and future perspectives.
Collapse
Affiliation(s)
- Ankur Sahu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Jędrzej Jakub Szymański
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Nadine Töpfer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| |
Collapse
|
30
|
Integrated knowledge mining, genome-scale modeling, and machine learning for predicting Yarrowia lipolytica bioproduction. Metab Eng 2021; 67:227-236. [PMID: 34242777 DOI: 10.1016/j.ymben.2021.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023]
Abstract
Predicting bioproduction titers from microbial hosts has been challenging due to complex interactions between microbial regulatory networks, stress responses, and suboptimal cultivation conditions. This study integrated knowledge mining, feature extraction, genome-scale modeling (GSM), and machine learning (ML) to develop a model for predicting Yarrowia lipolytica chemical titers (i.e., organic acids, terpenoids, etc.). First, Y. lipolytica production data, including cultivation conditions, genetic engineering strategies, and product information, was manually collected from literature (~100 papers) and stored as either numerical (e.g., substrate concentrations) or categorical (e.g., bioreactor modes) variables. For each case recorded, central pathway fluxes were estimated using GSMs and flux balance analysis (FBA) to provide metabolic features. Second, a ML ensemble learner was trained to predict strain production titers. Accurate predictions on the test data were obtained for instances with production titers >1 g/L (R2 = 0.87). However, the model had reduced predictability for low performance strains (0.01-1 g/L, R2 = 0.29) potentially due to biosynthesis bottlenecks not captured in the features. Feature ranking indicated that the FBA fluxes, the number of enzyme steps, the substrate inputs, and thermodynamic barriers (i.e., Gibbs free energy of reaction) were the most influential factors. Third, the model was evaluated on other oleaginous yeasts and indicated there were conserved features for some hosts that can be potentially exploited by transfer learning. The platform was also designed to assist computational strain design tools (such as OptKnock) to screen genetic targets for improved microbial production in light of experimental conditions.
Collapse
|
31
|
Magazzù G, Zampieri G, Angione C. Multimodal regularised linear models with flux balance analysis for mechanistic integration of omics data. Bioinformatics 2021; 37:3546-3552. [PMID: 33974036 DOI: 10.1093/bioinformatics/btab324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/06/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION High-throughput biological data, thanks to technological advances, have become cheaper to collect, leading to the availability of vast amounts of omic data of different types. In parallel, the in silico reconstruction and modelling of metabolic systems is now acknowledged as a key tool to complement experimental data on a large scale. The integration of these model- and data-driven information is therefore emerging as a new challenge in systems biology, with no clear guidance on how to better take advantage of the inherent multi-source and multi-omic nature of these data types while preserving mechanistic interpretation. RESULTS Here we investigate different regularisation techniques for high-dimensional data derived from the integration of gene expression profiles with metabolic flux data, extracted from strain-specific metabolic models, to improve cellular growth rate predictions. To this end, we propose ad-hoc extensions of previous regularisation frameworks including group, view-specific and principal component regularisation, and experimentally compare them using data from 1,143 Saccharomyces cerevisiae strains. We observe a divergence between methods in terms of regression accuracy and integration effectiveness based on the type of regularisation employed. In multi-omic regression tasks, when learning from experimental and model-generated omic data, our results demonstrate the competitiveness and ease of interpretation of multimodal regularised linear models compared to data-hungry methods based on neural networks. AVAILABILITY All data, models, and code produced in this work are available on GitHub at https://github.com/Angione-Lab/HybridGroupIPFLasso_pc2Lasso. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Giuseppe Magazzù
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Guido Zampieri
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.,Department of Biology, University of Padova, Padova, Italy
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.,Healthcare Innovation Centre, Teesside University, Middlesbrough, UK.,Centre for Digital Innovation, Teesside University, Middlesbrough, UK
| |
Collapse
|