1
|
Park S, Park SK, Liebman SW. A model of inborn metabolism errors associated with adenine amyloid-like fiber formation reduces TDP-43 aggregation and toxicity in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626668. [PMID: 39677629 PMCID: PMC11643018 DOI: 10.1101/2024.12.03.626668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
TDP-43 is linked to human diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). Expression of TDP-43 in yeast is known to be toxic, cause cells to elongate, form liquid-like aggregates, and inhibit autophagy and TOROID formation. Here, we used the apt1Δ aah1Δ yeast model of disorders of inborn errors of metabolism, previously shown to lead to intracellular adenine accumulation and adenine amyloid-like fiber formation, to explore interactions with TDP-43. Results show that the double deletion shifts the TDP-43 aggregates from a liquid-like, toward a more amyloid-like, state. At the same time the deletions reduce TDP-43's effects on toxicity, cell morphology, autophagy, and TOROID formation without affecting the level of TDP-43. This suggests that the liquid-like and not amyloid-like TDP-43 aggregates are responsible for the deleterious effects in yeast. How the apt1Δ aah1Δ deletions alter TDP-43 aggregate formation is not clear. Possibly, it results from adenine/TDP-43 fiber interactions as seen for other heterologous fibers. The work offers new insights into the potential interactions between metabolite-based amyloids and pathological protein aggregates, with broad implications for understanding protein misfolding diseases.
Collapse
|
2
|
Petronilho EC, de Andrade GC, de Sousa GDS, Almeida FP, Mota MF, Gomes AVDS, Pinheiro CHS, da Silva MC, Arruda HRS, Marques MA, Vieira TCRG, de Oliveira GAP, Silva JL. Oncogenic p53 triggers amyloid aggregation of p63 and p73 liquid droplets. Commun Chem 2024; 7:207. [PMID: 39284933 PMCID: PMC11405828 DOI: 10.1038/s42004-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/29/2024] [Indexed: 09/20/2024] Open
Abstract
P53 Phase separation is crucial towards amyloid aggregation and p63 and p73 have enhanced expression in tumors. This study examines the phase behaviors of p53, p63, and p73. Here we show that unlike the DNA-binding domain of p53 (p53C), the p63C and p73C undergo phase separation, but do not form amyloids under physiological temperatures. Wild-type and mutant p53C form droplets at 4°C and aggregates at 37 °C with amyloid properties. Mutant p53C promotes amyloid-like states in p63C and p73C, recruiting them into membraneless organelles. Amyloid conversion is supported by thioflavin T and Congo red binding, increased light scattering, and circular dichroism. Full-length mutant p53 and p63C (or p73C) co-transfection shows reduced fluorescence recovery after photobleaching. Heparin inhibits the prion-like aggregation of p63C and p73C induced by p53C. These findings highlight the role of p53 in initiating amyloid aggregation in p63 and p73, opening avenues for targeting prion-like conversion in cancer therapy.
Collapse
Affiliation(s)
- Elaine C Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guilherme C de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gileno Dos S de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando P Almeida
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Vitória Dos S Gomes
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Henrique S Pinheiro
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mylena C da Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hiam R S Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
3
|
Park S, Park SK, Liebman SW. Expression of Wild-Type and Mutant Human TDP-43 in Yeast Inhibits TOROID (TORC1 Organized in Inhibited Domain) Formation and Autophagy Proportionally to the Levels of TDP-43 Toxicity. Int J Mol Sci 2024; 25:6258. [PMID: 38892445 PMCID: PMC11172667 DOI: 10.3390/ijms25116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
TDP-43 forms aggregates in the neurons of patients with several neurodegenerative diseases. Human TDP-43 also aggregates and is toxic in yeast. Here, we used a yeast model to investigate (1) the nature of TDP-43 aggregates and (2) the mechanism of TDP-43 toxicity. Thioflavin T, which stains amyloid but not wild-type TDP-43 aggregates, also did not stain mutant TDP-43 aggregates made from TDP-43 with intragenic mutations that increase or decrease its toxicity. However, 1,6-hexanediol, which dissolves liquid droplets, dissolved wild-type or mutant TDP-43 aggregates. To investigate the mechanism of TDP-43 toxicity, the effects of TDP-43 mutations on the autophagy of the GFP-ATG8 reporter were examined. Mutations in TDP-43 that enhance its toxicity, but not mutations that reduce its toxicity, caused a larger reduction in autophagy. TOROID formation, which enhances autophagy, was scored as GFP-TOR1 aggregation. TDP-43 inhibited TOROID formation. TORC1 bound to both toxic and non-toxic TDP-43, and to TDP-43, with reduced toxicity due to pbp1Δ. However, extragenic modifiers and TDP-43 mutants that reduced TDP-43 toxicity, but not TDP-43 mutants that enhanced toxicity, restored TOROID formation. This is consistent with the hypothesis that TDP-43 is toxic in yeast because it reduces TOROID formation, causing the inhibition of autophagy. Whether TDP-43 exerts a similar effect in higher cells remains to be determined.
Collapse
Affiliation(s)
| | | | - Susan W. Liebman
- Department of Pharmacology, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
4
|
Kulagin KA, Starodubova ES, Osipova PJ, Lipatova AV, Cherdantsev IA, Poddubko SV, Karpov VL, Karpov DS. Synergistic Effect of a Combination of Proteasome and Ribonucleotide Reductase Inhibitors in a Biochemical Model of the Yeast Saccharomyces cerevisiae and a Glioblastoma Cell Line. Int J Mol Sci 2024; 25:3977. [PMID: 38612788 PMCID: PMC11011839 DOI: 10.3390/ijms25073977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Proteasome inhibitors are used in the therapy of several cancers, and clinical trials are underway for their use in the treatment of glioblastoma (GBM). However, GBM becomes resistant to chemotherapy relatively rapidly. Recently, the overexpression of ribonucleotide reductase (RNR) genes was found to mediate therapy resistance in GBM. The use of combinations of chemotherapeutic agents is considered a promising direction in cancer therapy. The present work aimed to evaluate the efficacy of the combination of proteasome and RNR inhibitors in yeast and GBM cell models. We have shown that impaired proteasome function results in increased levels of RNR subunits and increased enzyme activity in yeast. Co-administration of the proteasome inhibitor bortezomib and the RNR inhibitor hydroxyurea was found to significantly reduce the growth rate of S. cerevisiae yeast. Accordingly, the combination of bortezomib and another RNR inhibitor gemcitabine reduced the survival of DBTRG-05MG compared to the HEK293 cell line. Thus, yeast can be used as a simple model to evaluate the efficacy of combinations of proteasome and RNR inhibitors.
Collapse
Affiliation(s)
- Kirill A. Kulagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Elizaveta S. Starodubova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Pamila J. Osipova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Anastasia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Igor A. Cherdantsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
| | - Svetlana V. Poddubko
- Institute of Biomedical Problems of Russian Academy of Sciences, 123007 Moscow, Russia;
| | - Vadim L. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (K.A.K.); (E.S.S.); (P.J.O.); (A.V.L.); (I.A.C.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| |
Collapse
|
5
|
Naeimzadeh Y, Tajbakhsh A, Fallahi J. Understanding the prion-like behavior of mutant p53 proteins in triple-negative breast cancer pathogenesis: The current therapeutic strategies and future directions. Heliyon 2024; 10:e26260. [PMID: 38390040 PMCID: PMC10881377 DOI: 10.1016/j.heliyon.2024.e26260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Breast cancer (BC) is viewed as a significant public health issue and is the primary cause of cancer-related deaths among women worldwide. Triple-negative breast cancer (TNBC) is a particularly aggressive subtype that predominantly affects young premenopausal women. The tumor suppressor p53 playsa vital role in the cellular response to DNA damage, and its loss or mutations are commonly present in many cancers, including BC. Recent evidence suggests that mutant p53 proteins can aggregate and form prion-like structures, which may contribute to the pathogenesis of different types of malignancies, such as BC. This review provides an overview of BC molecular subtypes, the epidemiology of TNBC, and the role of p53 in BC development. We also discuss the potential implications of prion-like aggregation in BC and highlight future research directions. Moreover, a comprehensive analysis of the current therapeutic approaches targeting p53 aggregates in BC treatment is presented. Strategies including small molecules, chaperone inhibitors, immunotherapy, CRISPR-Cas9, and siRNA are discussed, along with their potential benefits and drawbacks. The use of these approaches to inhibit p53 aggregation and degradation represents a promising target for cancer therapy. Future investigations into the efficacy of these approaches against various p53 mutations or binding to non-p53 proteins should be conducted to develop more effective and personalized therapies for BC treatment.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| |
Collapse
|
6
|
Son M, Han S, Lee S. Prions in Microbes: The Least in the Most. J Microbiol 2023; 61:881-889. [PMID: 37668956 DOI: 10.1007/s12275-023-00070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 09/06/2023]
Abstract
Prions are infectious proteins that mostly replicate in self-propagating amyloid conformations (filamentous protein polymers) and consist of structurally altered normal soluble proteins. Prions can arise spontaneously in the cell without any clear reason and are generally considered fatal disease-causing agents that are only present in mammals. However, after the seminal discovery of two prions, [PSI+] and [URE3], in the eukaryotic model microorganism Saccharomyces cerevisiae, at least ten more prions have been discovered, and their biological and pathological effects on the host, molecular structure, and the relationship between prions and cellular components have been studied. In a filamentous fungus model, Podospora anserina, a vegetative incomparability-related [Het-s] prion that directly triggers cell death during anastomosis (hyphal fusion) was discovered. These prions in eukaryotic microbes have extended our understanding to overcome most fatal human prion/amyloid diseases. A prokaryotic microorganism (Clostridium botulinum) was reported to have a prion analog. The transcriptional regulators of C. botulinum-Rho can be converted into the self-replicating prion form ([RHO-X-C+]), which may affect global transcription. Here, we outline the major issues with prions in microbes and the lessons learned from the relatively uncovered microbial prion world.
Collapse
Affiliation(s)
- Moonil Son
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.
- Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| | - Sia Han
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Seyeon Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
7
|
Silva JL, Foguel D, Ferreira VF, Vieira TCRG, Marques MA, Ferretti GDS, Outeiro TF, Cordeiro Y, de Oliveira GAP. Targeting Biomolecular Condensation and Protein Aggregation against Cancer. Chem Rev 2023. [PMID: 37379327 DOI: 10.1021/acs.chemrev.3c00131] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Biomolecular condensates, membrane-less entities arising from liquid-liquid phase separation, hold dichotomous roles in health and disease. Alongside their physiological functions, these condensates can transition to a solid phase, producing amyloid-like structures implicated in degenerative diseases and cancer. This review thoroughly examines the dual nature of biomolecular condensates, spotlighting their role in cancer, particularly concerning the p53 tumor suppressor. Given that over half of the malignant tumors possess mutations in the TP53 gene, this topic carries profound implications for future cancer treatment strategies. Notably, p53 not only misfolds but also forms biomolecular condensates and aggregates analogous to other protein-based amyloids, thus significantly influencing cancer progression through loss-of-function, negative dominance, and gain-of-function pathways. The exact molecular mechanisms underpinning the gain-of-function in mutant p53 remain elusive. However, cofactors like nucleic acids and glycosaminoglycans are known to be critical players in this intersection between diseases. Importantly, we reveal that molecules capable of inhibiting mutant p53 aggregation can curtail tumor proliferation and migration. Hence, targeting phase transitions to solid-like amorphous and amyloid-like states of mutant p53 offers a promising direction for innovative cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Debora Foguel
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor F Ferreira
- Faculty of Pharmacy, Fluminense Federal University (UFF), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, U.K
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
8
|
Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Biomolecular Liquid-Liquid Phase Separation for Biotechnology. BIOTECH 2023; 12:26. [PMID: 37092470 PMCID: PMC10123627 DOI: 10.3390/biotech12020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The liquid-liquid phase separation (LLPS) of biomolecules induces condensed assemblies called liquid droplets or membrane-less organelles. In contrast to organelles with lipid membrane barriers, the liquid droplets induced by LLPS do not have distinct barriers (lipid bilayer). Biomolecular LLPS in cells has attracted considerable attention in broad research fields from cellular biology to soft matter physics. The physical and chemical properties of LLPS exert a variety of functions in living cells: activating and deactivating biomolecules involving enzymes; controlling the localization, condensation, and concentration of biomolecules; the filtration and purification of biomolecules; and sensing environmental factors for fast, adaptive, and reversible responses. The versatility of LLPS plays an essential role in various biological processes, such as controlling the central dogma and the onset mechanism of pathological diseases. Moreover, biomolecular LLPS could be critical for developing new biotechnologies such as the condensation, purification, and activation of a series of biomolecules. In this review article, we introduce some fundamental aspects and recent progress of biomolecular LLPS in living cells and test tubes. Then, we discuss applications of biomolecular LLPS toward biotechnologies.
Collapse
Affiliation(s)
| | | | | | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
9
|
Idres YM, Lai AJ, McMillan NAJ, Idris A. Hyperactivation of p53 using CRISPRa kills human papillomavirus-driven cervical cancer cells. Virus Genes 2023; 59:312-316. [PMID: 36474086 DOI: 10.1007/s11262-022-01960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Clinical and pre-clinical work for a number of cancer types has demonstrated relatively positive outcomes and effective tumour regression when the level and function of p53, a well-established tumour suppressor, is restored. Human papillomavirus (HPV)-driven cancers encode the E6 oncoprotein, which leads to p53 degradation, to allow the carcinogenic process to proceed. Indeed, there have been several attempts to revive p53 function in HPV-driven cancers by both pharmacological and genetic means to increase p53 bioavailability. Here, we employed a CRISPR activation (CRISPRa) approach to overcome HPV-mediated silencing of p53 by hyperexpressing the p53 gene promoter. Our data show that CRISPRa-mediated hyperexpression of p53 leads to HPV+ cervical cancer cell killing and the reduction of cell proliferation. This proof-of-concept data suggest that increasing p53 bioavailability may potentially be a promising therapeutic approach for the treatment of HPV-driven cancers.
Collapse
Affiliation(s)
- Yusuf M Idres
- Menzies Health Institute Queensland, School of Pharmacy and Medical Sciences, Griffith University, Building G05, Room 3.37a, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Alan J Lai
- Menzies Health Institute Queensland, School of Pharmacy and Medical Sciences, Griffith University, Building G05, Room 3.37a, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Nigel A J McMillan
- Menzies Health Institute Queensland, School of Pharmacy and Medical Sciences, Griffith University, Building G05, Room 3.37a, Gold Coast Campus, Gold Coast, QLD, 4222, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Sciences, Griffith University, Building G05, Room 3.37a, Gold Coast Campus, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
10
|
TFIID dependency of steady-state mRNA transcription altered epigenetically by simultaneous functional loss of Taf1 and Spt3 is Hsp104-dependent. PLoS One 2023; 18:e0281233. [PMID: 36757926 PMCID: PMC9910645 DOI: 10.1371/journal.pone.0281233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
In Saccharomyces cerevisiae, class II gene promoters have been divided into two subclasses, TFIID- and SAGA-dominated promoters or TFIID-dependent and coactivator-redundant promoters, depending on the experimental methods used to measure mRNA levels. A prior study demonstrated that Spt3, a TBP-delivering subunit of SAGA, functionally regulates the PGK1 promoter via two mechanisms: by stimulating TATA box-dependent transcriptional activity and conferring Taf1/TFIID independence. However, only the former could be restored by plasmid-borne SPT3. In the present study, we sought to determine why ectopically expressed SPT3 is unable to restore Taf1/TFIID independence to the PGK1 promoter, identifying that this function was dependent on the construction protocol for the SPT3 taf1 strain. Specifically, simultaneous functional loss of Spt3 and Taf1 during strain construction was a prerequisite to render the PGK1 promoter Taf1/TFIID-dependent in this strain. Intriguingly, genetic approaches revealed that an as-yet unidentified trans-acting factor reprogrammed the transcriptional mode of the PGK1 promoter from the Taf1/TFIID-independent state to the Taf1/TFIID-dependent state. This factor was generated in the haploid SPT3 taf1 strain in an Hsp104-dependent manner and inherited meiotically in a non-Mendelian fashion. Furthermore, RNA-seq analyses demonstrated that this factor likely affects the transcription mode of not only the PGK1 promoter, but also of many other class II gene promoters. Collectively, these findings suggest that a prion or biomolecular condensate is generated in a Hsp104-dependent manner upon simultaneous functional loss of TFIID and SAGA, and could alter the roles of these transcription complexes on a wide variety of class II gene promoters without altering their primary sequences. Therefore, these findings could provide the first evidence that TFIID dependence of class II gene transcription can be altered epigenetically, at least in Saccharomyces cerevisiae.
Collapse
|
11
|
Comment on Billant et al. p53, A Victim of the Prion Fashion. Cancers 2021, 13, 269. Cancers (Basel) 2023; 15:cancers15010309. [PMID: 36612305 PMCID: PMC9818150 DOI: 10.3390/cancers15010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
The p53 tumor suppressor is a central protein in the fight against cancer [...].
Collapse
|
12
|
The chameleonic behavior of p53 in health and disease: the transition from a client to an aberrant condensate scaffold in cancer. Essays Biochem 2022; 66:1023-1033. [DOI: 10.1042/ebc20220064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022]
Abstract
Abstract
In 1972, the Weber statement, “The multiplicity of interactions and the variety of effects that follow from them show that multimer proteins are unlikely to be limited to a minimal number of allowed conformations,” first addressed the dynamic nature of proteins. This idea serves as a foundation for understanding why several macromolecules, such as p53, exhibit the properties of a molecular chameleon. Functionally competent states comprise a myriad of p53 three-dimensional arrangements depending on the stimuli. For instance, the interaction of p53 with nuclear components could induce liquid–liquid phase separation (LLPS) and the formation of membraneless organelles. The functional or deleterious role of p53 in liquid droplets is still unclear. Functional aspects display p53 interconverting between droplets and tetramer with its functional abilities maintained. In contrast, the aberrant phase separation is likely to fuel the aggregation path, usually associated with the onset and progression of age-related neurodegenerative diseases and cancer. Here, we gathered the most relevant aspects that lead p53 to phase separation and the resulting structural effects, attempting to understand p53’s functional and disease-relevant processes. Aberrant phase separation and aggregation of mutant p53 have become important therapeutic targets against cancer.
Collapse
|
13
|
Zhou F, Dou X, Li C. CKB affects human osteosarcoma progression by regulating the p53 pathway. Am J Cancer Res 2022; 12:4652-4665. [PMID: 36381321 PMCID: PMC9641398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023] Open
Abstract
This study aimed to explore the role of the creatine kinase B (CKB) gene in the development of human osteosarcoma (OS). Western blotting and qRT-PCR were performed to detect CKB expression in tissues and cells. CCK-8, colony formation, flow cytometry, Transwell, and cell scratch assays were performed to detect OS cell viability, proliferation, apoptosis, invasion, and migration. Gene set enrichment analysis (GSEA) was used to conduct signal pathway enrichment. CKB expression was higher in OS tissues and cells than that in normal tissues and cells. Silencing CKB expression reduced cell proliferation, migration, and invasion, and improved cell apoptosis in HOS cells, while overexpressing CKB increased cell proliferation, migration, and invasion, and decreased apoptosis in U2-OS cells. GSEA showed that CKB affected the p53 signaling pathway. Overexpression of CKB inhibited the protein expression of p53, p21, and Bax and promoted the expression of Bcl-2 and MDM2 in U2-OS cells. Conversely, silencing CKB promoted the protein expression of p53, p21, and Bax, and inhibited the expression of Bcl-2 and MDM2 in HOS cells. Silencing p53 could reverse the effect of the silencing CKB in HOS cells, and overexpressing p53 could reverse the effect of overexpressing CKB in U2-OS cells. Taken together, CKB affects the development of OS by regulating the activity of the p53 signaling pathway.
Collapse
Affiliation(s)
- Fengxin Zhou
- Department of Orthopedics, Tianjin Integrative Medicine Hospital (Tianjin Nankai Hospital)Tianjin 300100, China
| | - Xinli Dou
- Department of Oncology, Dagang HospitalBinhai New Area, Tianjin 300270, China
| | - Chenguang Li
- Department of Orthopedics, Tianjin Integrative Medicine Hospital (Tianjin Nankai Hospital)Tianjin 300100, China
| |
Collapse
|
14
|
Kachkin DV, Volkov KV, Sopova JV, Bobylev AG, Fedotov SA, Inge-Vechtomov SG, Galzitskaya OV, Chernoff YO, Rubel AA, Aksenova AY. Human RAD51 Protein Forms Amyloid-like Aggregates In Vitro. Int J Mol Sci 2022; 23:ijms231911657. [PMID: 36232958 PMCID: PMC9570251 DOI: 10.3390/ijms231911657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 12/30/2022] Open
Abstract
RAD51 is a central protein of homologous recombination and DNA repair processes that maintains genome stability and ensures the accurate repair of double-stranded breaks (DSBs). In this work, we assessed amyloid properties of RAD51 in vitro and in the bacterial curli-dependent amyloid generator (C-DAG) system. Resistance to ionic detergents, staining with amyloid-specific dyes, polarized microscopy, transmission electron microscopy (TEM), X-ray diffraction and other methods were used to evaluate the properties and structure of RAD51 aggregates. The purified human RAD51 protein formed detergent-resistant aggregates in vitro that had an unbranched cross-β fibrillar structure, which is typical for amyloids, and were stained with amyloid-specific dyes. Congo-red-stained RAD51 aggregates demonstrated birefringence under polarized light. RAD51 fibrils produced sharp circular X-ray reflections at 4.7 Å and 10 Å, demonstrating that they had a cross-β structure. Cytoplasmic aggregates of RAD51 were observed in cell cultures overexpressing RAD51. We demonstrated that a key protein that maintains genome stability, RAD51, has amyloid properties in vitro and in the C-DAG system and discussed the possible biological relevance of this observation.
Collapse
Affiliation(s)
- Daniel V. Kachkin
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill V. Volkov
- Research Resource Center “Molecular and Cell Technologies”, Research Park, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Julia V. Sopova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Center of Transgenesis and Genome Editing, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia
| | - Sergei A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Sergei G. Inge-Vechtomov
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Oxana V. Galzitskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 3 Institutskaya St., 142290 Moscow, Russia
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (A.A.R.); (A.Y.A.)
| | - Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Correspondence: (A.A.R.); (A.Y.A.)
| |
Collapse
|
15
|
Idres YM, McMillan NAJ, Idris A. Hyperactivating p53 in Human Papillomavirus-Driven Cancers: A Potential Therapeutic Intervention. Mol Diagn Ther 2022; 26:301-308. [PMID: 35380358 PMCID: PMC9098605 DOI: 10.1007/s40291-022-00583-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 12/26/2022]
Abstract
Despite a vaccine being available, human papillomavirus virus (HPV)-driven cancers remain the ninth most prevalent cancers globally. Current therapies have significant drawbacks and often still lead to poor prognosis and underwhelming survival rates. With gene therapy becoming more available in the clinic, it poses a new front for therapeutic development. A characteristic of HPV-driven cancers is the ability to encode oncoproteins that aberrate normal p53 function without mutating this tumour-suppressor gene. The HPV E6 oncoprotein degrades p53 to allow the HPV-driven carcinogenic process to proceed. This review aimed to investigate the use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) gene-editing technology and how it may be used to overcome HPV-mediated silencing of p53 by hyper-expressing the p53 promoter. Increasing p53 bioavailability may have promising potential as a therapy and has been a goal in the context of HPV-driven cancers. Clinical trials and proof-of-concept pre-clinical work have shown positive outcomes and tumour death when p53 levels are increased. Despite previous successes of RNA-based medicines, including the knockout of HPV oncogenes, the use of CRISPR activation is yet to be investigated as a promising potential therapy. This short review summarises key developments on attempts that have been made to increase p53 expression in the context of HPV cancer therapy, but leaves open the possibility for other cancers bearing a p53 wild-type gene.
Collapse
Affiliation(s)
- Yusuf M Idres
- Menzies Health Institute Queensland and School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Building G05, Room 3.37a, Gold Coast, QLD, 4222, Australia
| | - Nigel A J McMillan
- Menzies Health Institute Queensland and School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Building G05, Room 3.37a, Gold Coast, QLD, 4222, Australia
| | - Adi Idris
- Menzies Health Institute Queensland and School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Building G05, Room 3.37a, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
16
|
Nucleic acid actions on abnormal protein aggregation, phase transitions and phase separation. Curr Opin Struct Biol 2022; 73:102346. [PMID: 35247749 DOI: 10.1016/j.sbi.2022.102346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/06/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022]
Abstract
Liquid-liquid phase separation (LLPS) and phase transitions (PT) of proteins, which include the formation of gel- and solid-like species, have been characterized as physical processes related to the pathology of conformational diseases. Nucleic acid (NA)-binding proteins related to neurodegenerative disorders and cancer were shown by us and others to experience PT modulated by different NAs. Herein, we discuss recent work on phase separation and phase transitions of two amyloidogenic proteins, i.e. the prion protein (PrP) and p53, which undergo conformational changes and aggregate upon NA interaction. The role of different NAs in these processes is discussed to shed light on the relevance of PSs and PTs for both the functional and pathological roles of these mammalian proteins.
Collapse
|
17
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|
18
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
19
|
Marques MA, de Andrade GC, Silva JL, de Oliveira GAP. Protein of a thousand faces: The tumor-suppressive and oncogenic responses of p53. Front Mol Biosci 2022; 9:944955. [PMID: 36090037 PMCID: PMC9452956 DOI: 10.3389/fmolb.2022.944955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022] Open
Abstract
The p53 protein is a pleiotropic regulator working as a tumor suppressor and as an oncogene. Depending on the cellular insult and the mutational status, p53 may trigger opposing activities such as cell death or survival, senescence and cell cycle arrest or proliferative signals, antioxidant or prooxidant activation, glycolysis, or oxidative phosphorylation, among others. By augmenting or repressing specific target genes or directly interacting with cellular partners, p53 accomplishes a particular set of activities. The mechanism in which p53 is activated depends on increased stability through post-translational modifications (PTMs) and the formation of higher-order structures (HOS). The intricate cell death and metabolic p53 response are reviewed in light of gaining stability via PTM and HOS formation in health and disease.
Collapse
Affiliation(s)
- Mayra A. Marques
- *Correspondence: Mayra A. Marques, ; Guilherme A. P. de Oliveira,
| | | | | | | |
Collapse
|
20
|
Loh D, Reiter RJ. Melatonin: Regulation of Biomolecular Condensates in Neurodegenerative Disorders. Antioxidants (Basel) 2021; 10:1483. [PMID: 34573116 PMCID: PMC8465482 DOI: 10.3390/antiox10091483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular condensates are membraneless organelles (MLOs) that form dynamic, chemically distinct subcellular compartments organizing macromolecules such as proteins, RNA, and DNA in unicellular prokaryotic bacteria and complex eukaryotic cells. Separated from surrounding environments, MLOs in the nucleoplasm, cytoplasm, and mitochondria assemble by liquid-liquid phase separation (LLPS) into transient, non-static, liquid-like droplets that regulate essential molecular functions. LLPS is primarily controlled by post-translational modifications (PTMs) that fine-tune the balance between attractive and repulsive charge states and/or binding motifs of proteins. Aberrant phase separation due to dysregulated membrane lipid rafts and/or PTMs, as well as the absence of adequate hydrotropic small molecules such as ATP, or the presence of specific RNA proteins can cause pathological protein aggregation in neurodegenerative disorders. Melatonin may exert a dominant influence over phase separation in biomolecular condensates by optimizing membrane and MLO interdependent reactions through stabilizing lipid raft domains, reducing line tension, and maintaining negative membrane curvature and fluidity. As a potent antioxidant, melatonin protects cardiolipin and other membrane lipids from peroxidation cascades, supporting protein trafficking, signaling, ion channel activities, and ATPase functionality during condensate coacervation or dissolution. Melatonin may even control condensate LLPS through PTM and balance mRNA- and RNA-binding protein composition by regulating N6-methyladenosine (m6A) modifications. There is currently a lack of pharmaceuticals targeting neurodegenerative disorders via the regulation of phase separation. The potential of melatonin in the modulation of biomolecular condensate in the attenuation of aberrant condensate aggregation in neurodegenerative disorders is discussed in this review.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
21
|
Denney AS, Weems AD, McMurray MA. Selective functional inhibition of a tumor-derived p53 mutant by cytosolic chaperones identified using split-YFP in budding yeast. G3-GENES GENOMES GENETICS 2021; 11:6318398. [PMID: 34544131 PMCID: PMC8496213 DOI: 10.1093/g3journal/jkab230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
Life requires the oligomerization of individual proteins into higher-order assemblies. In order to form functional oligomers, monomers must adopt appropriate 3D structures. Molecular chaperones transiently bind nascent or misfolded proteins to promote proper folding. Single missense mutations frequently cause disease by perturbing folding despite chaperone engagement. A misfolded mutant capable of oligomerizing with wild-type proteins can dominantly poison oligomer function. We previously found evidence that human-disease-linked mutations in Saccharomyces cerevisiae septin proteins slow folding and attract chaperones, resulting in a kinetic delay in oligomerization that prevents the mutant from interfering with wild-type function. Here, we build upon our septin studies to develop a new approach for identifying chaperone interactions in living cells, and use it to expand our understanding of chaperone involvement, kinetic folding delays, and oligomerization in the recessive behavior of tumor-derived mutants of the tumor suppressor p53. We find evidence of increased binding of several cytosolic chaperones to a recessive, misfolding-prone mutant, p53(V272M). Similar to our septin results, chaperone overexpression inhibits the function of p53(V272M) with minimal effect on the wild type. Unlike mutant septins, p53(V272M) is not kinetically delayed under conditions in which it is functional. Instead, it interacts with wild-type p53 but this interaction is temperature sensitive. At high temperatures or upon chaperone overexpression, p53(V272M) is excluded from the nucleus and cannot function or perturb wild-type function. Hsp90 inhibition liberates mutant p53 to enter the nucleus. These findings provide new insights into the effects of missense mutations.
Collapse
Affiliation(s)
- Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrew D Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
22
|
Petronilho EC, Pedrote MM, Marques MA, Passos YM, Mota MF, Jakobus B, de Sousa GDS, Pereira da Costa F, Felix AL, Ferretti GDS, Almeida FP, Cordeiro Y, Vieira TCRG, de Oliveira GAP, Silva JL. Phase separation of p53 precedes aggregation and is affected by oncogenic mutations and ligands. Chem Sci 2021; 12:7334-7349. [PMID: 34163823 PMCID: PMC8171334 DOI: 10.1039/d1sc01739j] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF). The mechanism of the formation of the aggregates in the nucleus remains uncertain. The present study demonstrated that the DNA-binding domain of p53 (p53C) underwent phase separation (PS) on the pathway to aggregation under various conditions. p53C phase separated in the presence of the crowding agent polyethylene glycol (PEG). Similarly, mutant p53C (M237I and R249S) underwent PS; however, the process evolved to a solid-like phase transition faster than that in the case of wild-type p53C. The data obtained by microscopy of live cells indicated that transfection of mutant full-length p53 into the cells tended to result in PS and phase transition (PT) in the nuclear compartments, which are likely the cause of the GoF effects. Fluorescence recovery after photobleaching (FRAP) experiments revealed liquid characteristics of the condensates in the nucleus. Mutant p53 tended to undergo gel- and solid-like phase transitions in the nucleus and in nuclear bodies demonstrated by slow and incomplete recovery of fluorescence after photobleaching. Polyanions, such as heparin and RNA, were able to modulate PS and PT in vitro. Heparin apparently stabilized the condensates in a gel-like state, and RNA apparently induced a solid-like state of the protein even in the absence of PEG. Conditions that destabilize p53C into a molten globule conformation also produced liquid droplets in the absence of crowding. The disordered transactivation domain (TAD) modulated both phase separation and amyloid aggregation. In summary, our data provide mechanistic insight into the formation of p53 condensates and conditions that may result in the formation of aggregated structures, such as mutant amyloid oligomers, in cancer. The pathway of mutant p53 from liquid droplets to gel-like and solid-like (amyloid) species may be a suitable target for anticancer therapy. Mutant p53 tends to form aggregates with amyloid properties, especially amyloid oligomers inside the nucleus, which are believed to cause oncogenic gain-of-function (GoF).![]()
Collapse
Affiliation(s)
- Elaine C Petronilho
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Murilo M Pedrote
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Mayra A Marques
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yulli M Passos
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Michelle F Mota
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Benjamin Jakobus
- Modal Informática Ltda Almeida Godinho, 19, 304 Rio de Janeiro RJ 22741-140 Brazil
| | - Gileno Dos Santos de Sousa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Filipe Pereira da Costa
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Adriani L Felix
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Giulia D S Ferretti
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Fernando P Almeida
- National Center for Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Tuane C R G Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| | - Jerson L Silva
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro Rio de Janeiro RJ 21941-902 Brazil
| |
Collapse
|
23
|
Billant O, Friocourt G, Roux P, Voisset C. p53, A Victim of the Prion Fashion. Cancers (Basel) 2021; 13:E269. [PMID: 33450819 PMCID: PMC7828285 DOI: 10.3390/cancers13020269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/17/2022] Open
Abstract
Identified in the late 1970s as an oncogene, a driving force leading to tumor development, p53 turned out to be a key tumor suppressor gene. Now p53 is considered a master gene regulating the transcription of over 3000 target genes and controlling a remarkable number of cellular functions. The elevated prevalence of p53 mutations in human cancers has led to a recurring questioning about the roles of mutant p53 proteins and their functional consequences. Both mutants and isoforms of p53 have been attributed dominant-negative and gain of function properties among which is the ability to form amyloid aggregates and behave in a prion-like manner. This report challenges the ongoing "prion p53" hypothesis by reviewing evidence of p53 behavior in light of our current knowledge regarding amyloid proteins, prionoids and prions.
Collapse
Affiliation(s)
| | - Gaëlle Friocourt
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, F-29200 Brest, France;
| | - Pierre Roux
- CRBM, CNRS, UMR5234, 34293 Montpellier, France;
| | - Cécile Voisset
- Inserm, Université de Bretagne Occidentale, EFS, UMR 1078, GGB, F-29200 Brest, France;
| |
Collapse
|