1
|
Wu W, Hong H, Lin J, Yang D. Antimicrobial Responses to Bacterial Metabolic Activity and Biofilm Formation Studied Using Microbial Fuel Cell-Based Biosensors. BIOSENSORS 2024; 14:606. [PMID: 39727871 DOI: 10.3390/bios14120606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
Simultaneous monitoring of antimicrobial responses to bacterial metabolic activity and biofilm formation is critical for efficient screening of new anti-biofilm drugs. A microbial fuel cell-based biosensor using Pseudomonas aeruginosa as an electricigen was constructed. The effects of silver nanoparticles (AgNPs) on the cellular metabolic activity and biofilm formation of P. aeruginosa in the biosensors were investigated and compared with the traditional biofilm detection method. The crystal violet staining results showed that the concentration of AgNPs being increased to 20 and 40 μg/mL had a slight and obvious inhibitory effect on biofilm formation, respectively. In comparison, the detection sensitivity of the biosensor was much higher. When the concentration of AgNPs was 5 μg/mL, the output voltage of the biosensor was suppressed, and the inhibition gradually increased with the AgNPs dose. AgNPs inhibited the activity of planktonic cells in the anolyte and the formation of biofilm on the anode surface, and it had a dose-dependent effect on the secretion of phenazine in the anolyte. The biosensor could monitor the impacts of AgNPs not only on biofilm formation but also on cell activity and metabolic activity. It provides a new and sensitive method for the screening of anti-biofilm drugs.
Collapse
Affiliation(s)
- Wenguo Wu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Huiya Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jia Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Dayun Yang
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
2
|
Saulnier J, Jose C, Lagarde F. Electrochemical techniques for label-free and early detection of growing microbial cells and biofilms. Bioelectrochemistry 2024; 155:108587. [PMID: 37839250 DOI: 10.1016/j.bioelechem.2023.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Over the past decades, the misuse or abuse of antimicrobial agents to prevent and/or control infections has led to increased resistance of microbes to treatments, and antimicrobial resistance is now a subject of major global concern. In some cases, microbes possess the capacity to attach to biotic or abiotic surfaces, and to produce a protective polymeric matrix, forming biofilms of higher resistance and virulence compared to planktonic forms. To avoid further excessive and inappropriate use of antimicrobials, and to propose new effective treatments, it is very important to detect planktonic microbes and microbial biofilms in their early growth stage and at the point of need. In this review, we provide an overview of currently available electrochemical techniques, in particular impedimetric and voltamperometric methods, highlighting recent advances in the field and illustrating with examples in antibiotic susceptibility testing and microbial biofilm monitoring.
Collapse
Affiliation(s)
- Joelle Saulnier
- Universite Claude Bernard Lyon 1, Institute of Analytical Sciences, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Catherine Jose
- Universite Claude Bernard Lyon 1, Institute of Analytical Sciences, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Florence Lagarde
- Universite Claude Bernard Lyon 1, Institute of Analytical Sciences, CNRS, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
3
|
Naradasu D, Miran W, Okamoto A. Electrochemical Characterization of Two Gut Microbial Strains Cooperatively Promoting Multiple Sclerosis Pathogenesis. Microorganisms 2024; 12:257. [PMID: 38399661 PMCID: PMC10892914 DOI: 10.3390/microorganisms12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, we explored the extracellular electron transfer (EET) capabilities of two bacterial strains, OTU0001 and OTU0002, which are demonstrated in biofilm formation in mouse gut and the induction of autoimmune diseases like multiple sclerosis. OTU0002 displayed significant electrogenic behaviour, producing microbial current on an indium tin-doped oxide electrode surface, particularly in the presence of glucose, with a current density of 60 nA/cm2. The presence of cell-surface redox substrate potentially mediating EET was revealed by the redox-based staining method and electrochemical voltammetry assay. However, medium swapping analyses and the addition of flavins, a model redox mediator, suggest that the current production is dominated by soluble endogenous redox substrates in OTU0002. Given redox substrates were detected at the cell surface, the secreted redox molecule may interact with the cellular surface of OTU0002. In contrast to OTU0002, OTU0001 did not exhibit notable electrochemical activity, lacking cell-surface redox molecules. Further, the mixture of the two strains did not increase the current production from OTU0001, suggesting that OTU0001 does not support the EET mechanism of OTU0002. The present work revealed the coexistence of EET and non-EET capable pathogens in multi-species biofilm.
Collapse
Affiliation(s)
- Divya Naradasu
- Oral Microbiology, Bristol Dental School, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK;
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
| | - Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan;
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo 060-8628, Hokkaido, Japan
- Graduate School of Science and Engineering, College of Science and Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Ibaraki, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Kanagawa, Japan
| |
Collapse
|
4
|
Aiyer K, Mukherjee D, Doyle LE. A Weak Electricigen-Based Bioelectrochemical Sensor for Real-Time Monitoring of Chemical Pollutants in Water. ACS APPLIED BIO MATERIALS 2023; 6:4105-4110. [PMID: 37718488 DOI: 10.1021/acsabm.3c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Electroactive microorganisms are now understood to be abundant across nature, though many are categorized as "weak electricigens" not suitable for reasonable power generation. We report the use of weak electricigens from the natural environment for rapid, real-time water quality monitoring. Using a variety of pesticides as model chemical pollutants, the bioelectrochemical sensor was responsive within minutes at all concentrations tested (0.05-2 ppm) and could be repreatedly used long-term. Due to the prevalence of electroactive microorganisms in the natural environment, such sensors could work in tandem with conventional monitoring methods and may be useful for detecting emerging contaminants.
Collapse
Affiliation(s)
- Kartik Aiyer
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
- Center for Electromicrobiology, Aarhus University, Aarhus 8000, Denmark
| | - Debasa Mukherjee
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Lucinda E Doyle
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
5
|
Ho CL, Emran MY, Ihara S, Huang W, Wakai S, Li WP, Okamoto A. Osmium-grafted magnetic nanobeads improve microbial current generation via culture-free and quick enrichment of electrogenic bacteria. CHEMICAL ENGINEERING JOURNAL 2023; 466:142936. [DOI: 10.1016/j.cej.2023.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Deng X, Okamoto A. Direct extracellular electron transfer to an indium tin doped oxide electrode via heme redox reactions in Desulfovibrio ferrophilus IS5. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Abstract
Extracellular electron transfer (EET) is a process via which certain microorganisms, such as bacteria, exchange electrons with extracellular materials by creating an electrical link across their membranes. EET has been studied for the reactions on solid materials such as minerals and electrodes with implication in geobiology and biotechnology. EET-capable bacteria exhibit broad phylogenetic diversity, and some are found in environments with various types of electron acceptors/donors not limited to electrodes or minerals. Oxygen has also been shown to serve as the terminal electron acceptor for EET of Pseudomonas aeruginosa and Faecalibacterium prausnitzii. However, the physiological significance of such oxygen-terminating EETs, as well as the mechanisms underlying them, remain unclear. In order to understand the physiological advantage of oxygen-terminating EET and its link with energy metabolism, in this review, we compared oxygen-terminating EET with aerobic respiration, fermentation, and electrode-terminating EET. We also summarized benefits and limitations of oxygen-terminating EET in a biofilm setting, which indicate that EET capability enables bacteria to create a niche in the anoxic zone of aerobic biofilms, thereby remodeling bacterial metabolic activities in biofilms.
Collapse
|
8
|
Miran W, Imamura G, Okamoto A. Architecting data-driven microbial electrochemistry from scratch. PATTERNS (NEW YORK, N.Y.) 2022; 3:100637. [PMID: 36419452 PMCID: PMC9676528 DOI: 10.1016/j.patter.2022.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Waheed, a former postdoctoral researcher; Gaku, a senior researcher; and Akihiro, a group leader in Okamoto lab succeeded high-quality database construction and discovered a highly stable microbial power-generation mechanism. They talk about how wet electrochemists jumped into the data science field and the potential of data science to explore complex bacteria/electrode interactions.
Collapse
Affiliation(s)
- Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsubaka, Ibaraki 305-0044, Japan
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Gaku Imamura
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsubaka, Ibaraki 305-0044, Japan
- Graduate School of Information Science and Technology, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsubaka, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
9
|
Miran W, Huang W, Long X, Imamura G, Okamoto A. Multivariate landscapes constructed by Bayesian estimation over five hundred microbial electrochemical time profiles. PATTERNS (NEW YORK, N.Y.) 2022; 3:100610. [PMID: 36419444 PMCID: PMC9676538 DOI: 10.1016/j.patter.2022.100610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
Abstract
Data science emerges as a promising approach for studying and optimizing complex multivariable phenomena, such as the interaction between microorganisms and electrodes. However, there have been limited reports on a bioelectrochemical system that can produce a reliable database until date. Herein, we developed a high-throughput platform with low deviation to apply two-dimensional (2D) Bayesian estimation for electrode potential and redox-active additive concentration to optimize microbial current production (I c ). A 96-channel potentiostat represents <10% SD for maximum I c . 576 time-I c profiles were obtained in 120 different electrolyte and potentiostatic conditions with two model electrogenic bacteria, Shewanella and Geobacter. Acquisition functions showed the highest performance per concentration for riboflavin over a wide potential range in Shewanella. The underlying mechanism was validated by electrochemical analysis with mutant strains lacking outer-membrane redox enzymes. We anticipate that the combination of data science and high-throughput electrochemistry will greatly accelerate a breakthrough for bioelectrochemical technologies.
Collapse
Affiliation(s)
- Waheed Miran
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Wenyuan Huang
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Xizi Long
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Gaku Imamura
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Information Science and Technology, Osaka University, 1-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
10
|
Riboflavin-rich Agar Enhances the Rate of Extracellular Electron Transfer from Electrogenic Bacteria Inside a Thin-layer System. Bioelectrochemistry 2022; 148:108252. [DOI: 10.1016/j.bioelechem.2022.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022]
|
11
|
Deng X, Luo D, Okamoto A. Defined and unknown roles of conductive nanoparticles for the enhancement of microbial current generation: A review. BIORESOURCE TECHNOLOGY 2022; 350:126844. [PMID: 35158034 DOI: 10.1016/j.biortech.2022.126844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
The ability of various bacteria to make use of solid substrates through extracellular electron transfer (EET) or extracellular electron uptake (EEU) has enabled the development of valuable biotechnologies such as microbial fuel cells (MFCs) and microbial electrosynthesis (MES). It is common practice to use metallic and semiconductive nanoparticles (NPs) for microbial current enhancement. However, the effect of NPs is highly variable between systems, and there is no clear guideline for effectively increasing the current generation. In the present review, the proposed mechanisms for enhancing current production in MFCs and MES are summarized, and the critical factors for NPs to enhance microbial current generation are discussed. Implications for microbially induced iron corrosion, where iron sulfide NPs are proposed to enhance the rate of EEU, photochemically driven MES, and several future research directions to further enhance microbial current generation, are also discussed.
Collapse
Affiliation(s)
- Xiao Deng
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dan Luo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
12
|
Miran W, Long X, Huang W, Okamoto A. Current Production Capability of Drug-Resistant Pathogen Enables Its Rapid Label-Free Detection Applicable to Wastewater-Based Epidemiology. Microorganisms 2022; 10:microorganisms10020472. [PMID: 35208926 PMCID: PMC8875581 DOI: 10.3390/microorganisms10020472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
A rapid and label-free method for the detection of drug-resistant pathogens is in high demand for wastewater-based epidemiology. As recently shown, the extent of electrical current production (Ic) is a useful indicator of a pathogen's metabolic activity. Therefore, if drug-resistant bacteria have extracellular electron transport (EET) capability, a simple electric sensor may be able to detect not only the growth as a conventional plating technique but also metabolic activity specific for drug-resistant bacteria in the presence of antibiotics. Here, one of the multidrug-resistant pathogens in wastewater, Klebsiella pneumoniae, was shown to generate Ic, and the extent of Ic was unaffected by the microbial growth inhibitor, kanamycin, while the current was markedly decreased in environmental EET bacteria Shewanella oneidensis. Kanamycin differentiated Ic in K. pneumonia and S. oneidensis within 3 h. Furthermore, the detection of K. pneumoniae was successful in the presence of S. oneidensis in the electrochemical cell. These results clarify the advantage of detecting drug-resistant bacteria using whole-cell electrochemistry as a simple and rapid method to detect on-site drug-resistant pathogens in wastewater, compared with conventional colony counting, which takes a few days.
Collapse
Affiliation(s)
- Waheed Miran
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan;
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (X.L.); (W.H.)
| | - Xizi Long
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (X.L.); (W.H.)
| | - Wenyuan Huang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (X.L.); (W.H.)
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo 060-8628, Japan
| | - Akihiro Okamoto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan; (X.L.); (W.H.)
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo 060-8628, Japan
- Correspondence:
| |
Collapse
|
13
|
Aiyer K, Doyle LE. Capturing the signal of weak electricigens: a worthy endeavour. Trends Biotechnol 2021; 40:564-575. [PMID: 34696916 DOI: 10.1016/j.tibtech.2021.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022]
Abstract
Recently several non-traditional electroactive microorganisms have been discovered. These can be considered weak electricigens; microorganisms that typically rely on soluble electron acceptors and donors in their lifecycle but are also capable of extracellular electron transfer (EET), resulting in either a low, unreliable, or otherwise unexpected current. These unanticipated electroactive microorganisms represent a new chapter in electromicrobiology and have important medical, environmental, and biotechnological relevance. As such, it is essential to continue the momentum of their discovery. However, their study poses unique challenges due to their low current output. Capturing their signal necessitates novel approaches including unconventional electrode choice, the use of sensitive electrochemical techniques, and modifications of conventional experiments that use bioelectrochemical systems (BES).
Collapse
Affiliation(s)
- Kartik Aiyer
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, G5WV+9H9, Hauz Khas, New Delhi, Delhi 110016, India
| | - Lucinda E Doyle
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, G5WV+9H9, Hauz Khas, New Delhi, Delhi 110016, India.
| |
Collapse
|