1
|
Dubey Y, Kanvah S. Fluorescent N-oxides: applications in bioimaging and sensing. Org Biomol Chem 2024; 22:7582-7595. [PMID: 39206572 DOI: 10.1039/d4ob01086h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
N-Oxides, due to their zwitterionic nature and ability to form hydrogen bonds through the oxide ion, are highly water-soluble and widely used in biological and pharmacological studies. The N-oxide structural scaffold is introduced into molecules, enabling "turn-on" fluorescence via an intramolecular charge transfer (ICT) process. This process occurs when the N-O bond is cleaved, either through an enzymatic reaction under hypoxic conditions or by using Fe(II), which allows rapid and selective detection of Fe(II) at nanomolar concentrations both in vitro and in vivo. This review focuses on the literature published between 2010 and 2024, particularly emphasising N-oxide fluorophores and their applications in hypoxic cell lines, Fe(II) detection, and bioimaging.
Collapse
Affiliation(s)
- Yogesh Dubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, India.
| |
Collapse
|
2
|
Mao Q, Gu M, Hong C, Wang H, Ruan X, Liu Z, Yuan B, Xu M, Dong C, Mou L, Gao X, Tang G, Chen T, Wu A, Pan Y. A Contrast-Enhanced Tri-Modal MRI Technique for High-Performance Hypoxia Imaging of Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308850. [PMID: 38366271 DOI: 10.1002/smll.202308850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Personalized radiotherapy strategies enabled by the construction of hypoxia-guided biological target volumes (BTVs) can overcome hypoxia-induced radioresistance by delivering high-dose radiotherapy to targeted hypoxic areas of the tumor. However, the construction of hypoxia-guided BTVs is difficult owing to lack of precise visualization of hypoxic areas. This study synthesizes a hypoxia-responsive T1, T2, T2 mapping tri-modal MRI molecular nanoprobe (SPION@ND) and provides precise imaging of hypoxic tumor areas by utilizing the advantageous features of tri-modal magnetic resonance imaging (MRI). SPION@ND exhibits hypoxia-triggered dispersion-aggregation structural transformation. Dispersed SPION@ND can be used for routine clinical BTV construction using T1-contrast MRI. Conversely, aggregated SPION@ND can be used for tumor hypoxia imaging assessment using T2-contrast MRI. Moreover, by introducing T2 mapping, this work designs a novel method (adjustable threshold-based hypoxia assessment) for the precise assessment of tumor hypoxia confidence area and hypoxia level. Eventually this work successfully obtains hypoxia tumor target and accurates hypoxia tumor target, and achieves a one-stop hypoxia-guided BTV construction. Compared to the positron emission tomography-based hypoxia assessment, SPION@ND provides a new method that allows safe and convenient imaging of hypoxic tumor areas in clinical settings.
Collapse
Affiliation(s)
- Quanliang Mao
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Mengyin Gu
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Chengyuan Hong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Huiying Wang
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Xinzhong Ruan
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
| | - Zhusheng Liu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Bo Yuan
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Mengting Xu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Chen Dong
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Lei Mou
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Xiang Gao
- Department of Neurosurgery, First Affiliated Hospital of Ningbo University, Ningbo, 315010, P. R. China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo, Zhejiang Province, 315201, P. R. China
| | - Yuning Pan
- Department of Radiology, First Affiliated Hospital of Ningbo University, 59 Liuting Street, Ningbo, 315010, P. R. China
- Department of Radiology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, 200072, P. R. China
- Ningbo Clinical Research Center for Medical Imaging, Ningbo, 315010, P. R. China
| |
Collapse
|
3
|
Zhu L, Wu W. Dual/Multi-Modal Image-Guided Diagnosis and Therapy Based on Luminogens with Aggregation-Induced Emission. Molecules 2024; 29:371. [PMID: 38257284 PMCID: PMC10819122 DOI: 10.3390/molecules29020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The combination of multiple imaging methods has made an indelible contribution to the diagnosis, surgical navigation, treatment, and prognostic evaluation of various diseases. Due to the unique advantages of luminogens with aggregation-induced emission (AIE), their progress has been significant in the field of organic fluorescent contrast agents. Herein, this manuscript summarizes the recent advancements in AIE molecules as contrast agents for optical image-based dual/multi-modal imaging. We particularly focus on the exceptional properties of each material and the corresponding application in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
4
|
Liu D, Liang M, Fan A, Bing W, Qi J. Hypoxia-responsive AIEgens for precise disease theranostics. LUMINESCENCE 2024; 39:e4659. [PMID: 38286609 DOI: 10.1002/bio.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Specific biomarker-activatable probes have revolutionized theranostics, being beneficial for precision medicine. Hypoxia is a critical pathological characteristic prevalent in numerous major diseases such as cancers, cardiovascular disorders, inflammatory diseases, and acute ischemia. Aggregation-induced emission luminogens (AIEgens) have emerged as a promising tool to tackle the biomedical issues. Of particular significance are the hypoxia-responsive AIEgens, representing a kind of crucial probe capable of delicately sensing and responding to the hypoxic microenvironment, thereby enhancing the precision of disease diagnosis and treatment. In this review, we summarize the recent advances of hypoxia-responsive AIEgens for varied biomedical applications. The hypoxia-responsive structures based on AIEgens, such as azobenzene, nitrobenzene, and N-oxide are presented, which are in response to the reduction property to bring about significant alternations in response spectra and/or fluorescence intensity. The bioapplications including imaging and therapy of tumor and ischemia diseases are discussed. Moreover, the review sheds light on the future challenges and prospects in this field. This review aims to provide comprehensive guidance and understanding into the development of activatable bioprobes, especially the hypoxia-responsive AIEgens for improving the diagnosis and therapy outcome of related diseases.
Collapse
Affiliation(s)
- Dongfang Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Aohua Fan
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Karan S, Cho MY, Lee H, Kim HM, Park HS, Han EH, Sessler JL, Hong KS. Hypoxia-Directed and Self-Immolative Theranostic Agent: Imaging and Treatment of Cancer and Bacterial Infections. J Med Chem 2023; 66:14175-14187. [PMID: 37823731 PMCID: PMC10614179 DOI: 10.1021/acs.jmedchem.3c01274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 10/13/2023]
Abstract
The impact of bacteria on cancer progression and treatment is becoming increasingly recognized. Cancer-associated bacteria are linked to metastases, reduced efficacy, and survival challenges. In this study, we present a sensitive hypoxia-activated prodrug, NR-NO2, which comprises an antibiotic combined with a chemotherapeutic. This prodrug demonstrates rapid and robust fluorescence enhancement and exhibits potent antibacterial activity against both Gram-positive and Gram-negative bacteria as well as tumor cells. Upon activation, NR-NO2 produces a distinct "fluorescence-on" signal, enabling real-time drug release monitoring. By leveraging elevated nitroreductase in cancer cells, NR-NO2 gives rise to heightened bacterial cytotoxicity while sparing normal cells. In A549 solid tumor-bearing mice, NR-NO2 selectively accumulated at tumor sites, displaying fluorescence signals under hypoxia superior to those of a corresponding prodrug-like control. These findings highlight the potential of NR-NO2 as a promising cancer therapy prodrug that benefits from targeted release, antibacterial impact, and imaging-based guidance.
Collapse
Affiliation(s)
- Sanu Karan
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Mi Young Cho
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Hyunseung Lee
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Hyun Min Kim
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Hye Sun Park
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Eun Hee Han
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Austin, Texas 78712-1224, United States
| | - Kwan Soo Hong
- Research
Center for Bioconvergence Analysis, Korea
Basic Science Institute, Cheongju 28119, Republic
of Korea
- Graduate
School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
- Department
of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Wu M, Gong D, Zhou Y, Zha Z, Xia X. Activatable probes with potential for intraoperative tumor-specific fluorescence-imaging guided surgery. J Mater Chem B 2023; 11:9777-9797. [PMID: 37749982 DOI: 10.1039/d3tb01590d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Owing to societal development and aging population, the impact of cancer on human health and quality of life has increased. Early detection and surgical treatment are the most effective approaches for most cancer patients. As the scope of conventional tumor resection is determined by auxiliary examination and surgeon experience, there is often insufficient recognition of tiny tumors. The ability to detect such tumors can be improved by using fluorescent tumor-specific probes for surgical navigation. This review mainly describes the design principles and mechanisms of activatable probes for the fluorescence imaging of tumors. This type of probe is nonfluorescent in normal tissue but exhibits obvious fluorescence emission upon encountering tumor-specific substrates, such as enzymes or bioactive molecules, or changes in the microenvironment, such as a low pH. In some cases, a single-factor response does not guarantee the effective fluorescence labeling of tumors. Therefore, two-factor-activatable fluorescence imaging probes that react with two specific factors in tumor cells have also been developed. Compared with single biomarker testing, the simultaneous monitoring of multiple biomarkers may provide additional insight into the role of these substances in cancer development and aid in improving the accuracy of early cancer diagnosis. Research and progress in this field can provide new methods for precision medicine and targeted therapy. The development of new approaches for early diagnosis and treatment can effectively improve the prognosis of cancer patients and help enhance their quality of life.
Collapse
Affiliation(s)
- Mingzhu Wu
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| | - Deyan Gong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yuanyuan Zhou
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Xiaoping Xia
- Department of Obstetrics and Gynecology, Anhui Provincial Children's Hospital, Children's Hospital of Fudan University Anhui Hospital, Children's Hospital of Anhui Medical University, Hefei, Anhui 230051, P. R. China.
| |
Collapse
|
7
|
Gu H, Liu W, Li H, Sun W, Du J, Fan J, Peng X. 2,1,3-Benzothiadiazole derivative AIEgens for smart phototheranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Design of NIR-II high performance organic small molecule fluorescent probes and summary of their biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Huang Y, Zhang S, Chen Y, Dai H, Lin Y. Modular and Noncontact Wireless Detection Platform for Ovarian Cancer Markers: Electrochemiluminescent and Photoacoustic Dual-Signal Output Based on Multiresponse Carbon Nano-Onions. Anal Chem 2022; 94:13269-13277. [DOI: 10.1021/acs.analchem.2c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yitian Huang
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 32400, China
| | - Yanjie Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Hong Dai
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 32400, China
| | - Yanyu Lin
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| |
Collapse
|
10
|
Xu C, Ye R, Shen H, Lam JWY, Zhao Z, Zhong Tang B. Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angew Chem Int Ed Engl 2022; 61:e202204604. [PMID: 35543996 DOI: 10.1002/anie.202204604] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/11/2022]
Abstract
Nonradiative decay invariably competes with radiative decay during the deexcitation process of matter. In the community of luminescence research, nonradiative decay has been deemed less attractive than radiative decay. However, all things in their being are good for something and so is nonradiative decay. As the molecular motion-facilitated nonradiative decay (MMFND) effect is inevitable in photophysical processes, it provides a new avenue to convert the harvested light energy into exploitable forms by harnessing molecular motion. In many cases, active molecular motion enables thermal deactivation from excited states. In this Minireview, recent advances in photothermal and photoacoustic systems with MMFND character are summarized. We believe that this presentation of the rational engineering of molecular motion for efficient photothermal generation will deepen the understanding of the relationship between molecular motion and nonradiative decay and navigate people to rethink the positive aspects of nonradiative decay for the establishment of new light-controllable techniques.
Collapse
Affiliation(s)
- Changhuo Xu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
11
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
12
|
Xu C, Ye R, Shen H, Lam JWY, Zhao Z, Zhong Tang B. Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changhuo Xu
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Ruquan Ye
- Department of Chemistry State Key Laboratory of Marine Pollution City University of Hong Kong Hong Kong 999077 China
| | - Hanchen Shen
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Zheng Zhao
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong 999077 China
| |
Collapse
|
13
|
Ouyang J, Sun L, Zeng F, Wu S. Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic imaging. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214438] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Zheng F, Huang X, Ding J, Bi A, Wang S, Chen F, Zeng W. NIR-I Dye-Based Probe: A New Window for Bimodal Tumor Theranostics. Front Chem 2022; 10:859948. [PMID: 35402374 PMCID: PMC8984032 DOI: 10.3389/fchem.2022.859948] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Near-infrared (NIR, 650-1700 nm) bioimaging has emerged as a powerful strategy in tumor diagnosis. In particular, NIR-I fluorescence imaging (650-950 nm) has drawn more attention, benefiting from the high quantum yield and good biocompatibility. Since their biomedical applications are slightly limited by their relatively low penetration depth, NIR-I fluorescence imaging probes have been under extensive development in recent years. This review summarizes the particular application of the NIR-I fluorescent dye-contained bimodal probes, with emphasis on related nanoprobes. These probes have enabled us to overcome the drawbacks of individual imaging modalities as well as achieve synergistic imaging. Meanwhile, the application of these NIR-I fluorescence-based bimodal probes for cancer theranostics is highlighted.
Collapse
Affiliation(s)
- Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Jipeng Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shifen Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| |
Collapse
|
15
|
Recent advances in aggregation-induced emission luminogens in photoacoustic imaging. Eur J Nucl Med Mol Imaging 2022; 49:2560-2583. [PMID: 35277741 DOI: 10.1007/s00259-022-05726-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/13/2022] [Indexed: 12/14/2022]
|
16
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
17
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
18
|
Fan Z, Shi D, Zuo W, Feng J, Ge D, Su G, Yang L, Hou Z. Trojan-Horse Diameter-Reducible Nanotheranostics for Macroscopic/Microscopic Imaging-Monitored Chemo-Antiangiogenic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5033-5052. [PMID: 35045703 DOI: 10.1021/acsami.1c22350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although nanotheranostics have displayed striking potential toward precise nanomedicine, their targeting delivery and tumor penetration capacities are still impeded by several biological barriers. Besides, the current antitumor strategies mainly focus on killing tumor cells rather than antiangiogenesis. Enlightened by the fact that the smart transformable self-targeting nanotheranostics can enhance their targeting efficiency, tumor penetration, and cellular uptake, we herein report carrier-free Trojan-horse diameter-reducible metal-organic nanotheranostics by the coordination-driven supramolecular sequential co-assembly of the chemo-drug pemetrexed (PEM), transition-metal ions (FeIII), and antiangiogenesis pseudolaric acid B. Such nanotheranostics with both a high dual-drug payload efficiency and outstanding physiological stability are responsively decomposed into numerous ultra-small-diameter nanotheranostics under stimuli of the moderate acidic tumor microenvironment and then internalized into tumor cells through tumor-receptor-mediated self-targeting, synergistically enhancing tumor penetration and cellular uptake. Besides, such nanotheranostics enable visualization of self-targeting capacity under the macroscopic monitor of computed tomography/magnetic resonance imaging, thereby realizing efficient oncotherapy. Moreover, tumor microvessels are precisely monitored by optical coherence tomography angiography/laser speckle imaging during chemo-antiangiogenic therapy in vivo, visually verifying that such nanotheranostics possess an excellent antiangiogenic effect. Our work will provide a promising strategy for further tumor diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Zhongxiong Fan
- Department of biomaterials, College of Materials, The higher educational key laboratory for biomedical engineering of Fujian Province Research center of biomedical engineering of xiamen & Research Center of Biomedical Engineering of Xiamen, Xiamen University, Xiamen 361005, China
| | - Dao Shi
- Department of biomaterials, College of Materials, The higher educational key laboratory for biomedical engineering of Fujian Province Research center of biomedical engineering of xiamen & Research Center of Biomedical Engineering of Xiamen, Xiamen University, Xiamen 361005, China
| | - Wenbao Zuo
- School of Pharmaceutical Science, Xiamen University, Xiamen 361005, China
| | - Juan Feng
- The First People's Hospital Affiliated to Xiamen University, Xiamen 361005, China
| | - Dongtao Ge
- Department of biomaterials, College of Materials, The higher educational key laboratory for biomedical engineering of Fujian Province Research center of biomedical engineering of xiamen & Research Center of Biomedical Engineering of Xiamen, Xiamen University, Xiamen 361005, China
| | - Guanghao Su
- Institute of Pediatric Research, Children's Hospital of Soochow University, 92 Zhongnan Street, Suzhou 215025, China
| | - Lichao Yang
- School of Medicine, Xiamen University, Xiamen 361005, China
| | - Zhenqing Hou
- Department of biomaterials, College of Materials, The higher educational key laboratory for biomedical engineering of Fujian Province Research center of biomedical engineering of xiamen & Research Center of Biomedical Engineering of Xiamen, Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
Li S, Huo F, Yin C. Progress in the past five years of small organic molecule dyes for tumor microenvironment imaging. Chem Commun (Camb) 2022; 58:12642-12652. [DOI: 10.1039/d2cc04975a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tumor microenvironment (TME) is the survival environment for tumor cell proliferation and metastasis in deep tissues.
Collapse
Affiliation(s)
- Sha Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
20
|
Mukkamala R, Lindeman SD, Kragness KA, Shahriar I, Srinivasarao M, Low PS. Design and Characterization of Fibroblast Activation Protein Targeted Pan-Cancer Imaging Agent for Fluorescence-Guided Surgery of Solid Tumors. J Mater Chem B 2022; 10:2038-2046. [PMID: 35255116 DOI: 10.1039/d1tb02651h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor-targeted fluorescent dyes have been shown to significantly improve a surgeon's ability to locate and resect occult malignant lesions, thereby enhancing a patient’s chances of long term survival. Although several...
Collapse
Affiliation(s)
- Ramesh Mukkamala
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Spencer D Lindeman
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Kate A Kragness
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Imrul Shahriar
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Madduri Srinivasarao
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Philip S Low
- Department of Chemistry and Institute for Drug Discovery, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
21
|
Chen X, Han H, Tang Z, Jin Q, Ji J. Aggregation-Induced Emission-Based Platforms for the Treatment of Bacteria, Fungi, and Viruses. Adv Healthc Mater 2021; 10:e2100736. [PMID: 34190431 DOI: 10.1002/adhm.202100736] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Indexed: 12/19/2022]
Abstract
The prevention and control of pathogenic bacteria, fungi, and viruses is a herculean task for all the countries since they greatly threaten global public health. Rapid detection and effective elimination of these pathogens is crucial for the treatment of related diseases. It is urgently demanded to develop new diagnostic and therapeutic strategies to combat bacteria, fungi, and viruses-induced infections. The emergence of aggregation-induced emission (AIE) luminogens (AIEgens) is a revolutionary breakthrough for the treatment of many diseases, including pathogenic infections. In this review, the main focus is on the applications of AIEgens for theranostic treatment of pathogenic bacteria, fungi, and viruses. Due to the AIE characteristic, AIEgens are promising fluorescent probes for the detection of bacteria, fungi, and viruses with excellent sensitivity and photostability. Moreover, AIEgen-based theranostic platforms can be fabricated by introducing bactericidal moieties or designing AIE photosensitizers and AIE photothermal agents. The current strategies and ongoing developments of AIEgens for the treatment of pathogenic bacteria, fungi, and viruses will be discussed in detail.
Collapse
Affiliation(s)
- Xiaohui Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P. R. China
| | - Haijie Han
- Eye Center the Second Affiliated Hospital School of Medicine Zhejiang University 88 Jiefang Road Hangzhou 310009 P. R. China
| | - Zhe Tang
- Department of Surgery The Fourth Affiliated Hospital Zhejiang University School of Medicine Yiwu 322000 China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang Province 310027 P. R. China
| |
Collapse
|