1
|
Lear L, Hesse E, Buckling A. Disturbances can facilitate prior invasions more than subsequent invasions in microbial communities. Ecol Lett 2024; 27:e14493. [PMID: 39140430 DOI: 10.1111/ele.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/02/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Invasions are commonly found to benefit from disturbance events. However, the importance of the relative timing of the invasion and disturbance for invader success and impact on community composition remains uncertain. Here, we experimentally test this by invading a five-species bacterial community on eight separate occasions-four before a disturbance and four after. Invader success and impact on community composition was greatest when the invasion immediately followed the disturbance. However, the subsequent invasions had negligible success or impact. Pre-disturbance, invader success and impact was greatest when the invader was added just before the disturbance. Importantly, however, the first three pre-disturbance invasion events had significantly greater success than the last three post-disturbance invasions. Moreover, these findings were consistent across a range of propagule pressures. Overall, we demonstrate that timing is highly important for both the success and impact on community composition of an invader, with both being lower as time since disturbance progresses.
Collapse
Affiliation(s)
- Luke Lear
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Elze Hesse
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK
| |
Collapse
|
2
|
Papin M, Philippot L, Breuil MC, Bru D, Dreux-Zigha A, Mounier A, Le Roux X, Rouard N, Spor A. Survival of a microbial inoculant in soil after recurrent inoculations. Sci Rep 2024; 14:4177. [PMID: 38378706 PMCID: PMC10879113 DOI: 10.1038/s41598-024-54069-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024] Open
Abstract
Microbial inoculants are attracting growing interest in agriculture, but their efficacy remains unreliable in relation to their poor survival, partly due to the competition with the soil resident community. We hypothesised that recurrent inoculation could gradually alleviate this competition and improve the survival of the inoculant while increasing its impact on the resident bacterial community. We tested the effectiveness of such strategy with four inoculation sequences of Pseudomonas fluorescens strain B177 in soil microcosms with increasing number and frequency of inoculation, compared to a non-inoculated control. Each sequence was carried out at two inoculation densities (106 and 108 cfu.g soil-1). The four-inoculation sequence induced a higher abundance of P. fluorescens, 2 weeks after the last inoculation. No impact of inoculation sequences was observed on the resident community diversity and composition. Differential abundance analysis identified only 28 out of 576 dominants OTUs affected by the high-density inoculum, whatever the inoculation sequence. Recurrent inoculations induced a strong accumulation of nitrate, not explained by the abundance of nitrifying or nitrate-reducing microorganisms. In summary, inoculant density rather than inoculation pattern matters for inoculation effect on the resident bacterial communities, while recurrent inoculation allowed to slightly enhance the survival of the inoculant and strongly increased soil nitrate content.
Collapse
Affiliation(s)
- M Papin
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - L Philippot
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France.
| | - M C Breuil
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - D Bru
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - A Dreux-Zigha
- GreenCell Biopole Clermont Limagne, 63360, St Beauzire, France
| | - A Mounier
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - X Le Roux
- Universite Claude Bernard Lyon 1, Microbial Ecology Centre LEM, INRAE, CNRS, VetAgroSup, UMR INRAE 1418, 43 Blvd 11 Novembre 1918, 69622, Villeurbanne, France
| | - N Rouard
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| | - A Spor
- Univ Bourgogne Franche Comte, INRAE, Institut Agro Dijon, Agroecologie, 17 Rue Sully, 21000, Dijon, France
| |
Collapse
|
3
|
Liu X, Salles JF. Drivers and consequences of microbial community coalescence. THE ISME JOURNAL 2024; 18:wrae179. [PMID: 39288091 PMCID: PMC11447283 DOI: 10.1093/ismejo/wrae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/14/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Microbial communities are undergoing unprecedented dispersion and amalgamation across diverse ecosystems, thereby exerting profound and pervasive influences on microbial assemblages and ecosystem dynamics. This review delves into the phenomenon of community coalescence, offering an ecological overview that outlines its four-step process and elucidates the intrinsic interconnections in the context of community assembly. We examine pivotal mechanisms driving community coalescence, with a particular emphasis on elucidating the fates of both source and resident microbial communities and the consequential impacts on the ecosystem. Finally, we proffer recommendations to guide researchers in this rapidly evolving domain, facilitating deeper insights into the ecological ramifications of microbial community coalescence.
Collapse
Affiliation(s)
- Xipeng Liu
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Ecologie Microbienne Lyon, Centre National de la Recherche Scientifique (CNRS) UMR5557, Bâtiment Grégoire Mendel, 69100 Villeurbanne, France
| | - Joana Falcão Salles
- Microbial Ecology cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Bagra K, Bellanger X, Merlin C, Singh G, Berendonk TU, Klümper U. Environmental stress increases the invasion success of antimicrobial resistant bacteria in river microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166661. [PMID: 37652387 DOI: 10.1016/j.scitotenv.2023.166661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023]
Abstract
Environmental microbiomes are constantly exposed to invasion events through foreign, antibiotic resistant bacteria that were enriched in the anthropic sphere. However, the biotic and abiotic factors, as well as the natural barriers that determine the invasion success of these invader bacteria into the environmental microbiomes are poorly understood. A great example of such invasion events are river microbial communities constantly exposed to resistant bacteria originating from wastewater effluents. Here, we aim at gaining comprehensive insights into the key factors that determine their invasion success with a particular focus on the effects of environmental stressors, regularly co-released in wastewater effluents. Understanding invasion dynamics of resistant bacteria is crucial for limiting the environmental spread of antibiotic resistance. To achieve this, we grew natural microbial biofilms on glass slides in rivers for one month. The biofilms were then transferred to laboratory, recirculating flume systems and exposed to a single pulse of a model resistant invader bacterium (Escherichia coli) either in presence or absence of stress induced by Cu2+. The invasion dynamics of E. coli into the biofilms were then monitored for 14 days. Despite an initially successful introduction of E. coli into the biofilms, independent of the imposed stress, over time the invader perished in absence of stress. However, under stress the invading strain successfully established and proliferated in the biofilms. Noteworthy, the increased establishment success of the invader coincided with a loss in microbial community diversity under stress conditions, likely due to additional niche space becoming available for the invader.
Collapse
Affiliation(s)
- Kenyum Bagra
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany; Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Xavier Bellanger
- Université de Lorraine, CNRS, LCPME, UMR 7564, Villers-lès-Nancy, France
| | - Christophe Merlin
- Université de Lorraine, CNRS, LCPME, UMR 7564, Villers-lès-Nancy, France
| | - Gargi Singh
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Thomas U Berendonk
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - Uli Klümper
- Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany.
| |
Collapse
|
5
|
Joosten ED, Hamelin J, Milferstedt K. Initial type and abundance of cyanobacteria determine morphotype development of phototrophic ecosystems. FEMS Microbiol Ecol 2023; 99:fiad099. [PMID: 37653452 DOI: 10.1093/femsec/fiad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
Phototrophic aggregates containing filamentous cyanobacteria occur naturally, for example, as cryoconite on glaciers and microbialites in fresh or marine waters, but their formation is not fully understood. Laboratory models are now available to reproduce aggregation, that is, the formation of different morphotypes like hemispheroids, microbial mats or sphere-like aggregates we call photogranules. In the model, activated sludge as starting matrix is transformed into aggregates enclosed by a phototrophic layer of growing cyanobacteria. These cyanobacteria were either enriched from the matrix or we added them intentionally. We hypothesize that the resulting morphotype depends on the type and concentration of the added cyanobacteria. When cyanobacteria from mature photogranules were added to activated sludge, photogranulation was not observed, but microbial mats were formed. Photogranulation of sludge could be promoted when adding sufficient quantities of cyanobacterial strains that form clumps when grown as isolates. The cyanobacteria putatively responsible for photogranulation were undetectable or only present in low abundance in the final communities of photogranules, which were always dominated by mat-forming cyanobacteria. We suggest that, in a temporal succession, the ecosystem engineer initiating photogranulation eventually disappears, leaving behind its structural legacy. We conclude that understanding phototrophic aggregate formation requires considering the initial succession stages of the ecosystem development.
Collapse
Affiliation(s)
| | - Jérôme Hamelin
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100, Narbonne, France
| | - Kim Milferstedt
- INRAE, Univ Montpellier, LBE, 102 Avenue des Etangs, 11100, Narbonne, France
| |
Collapse
|
6
|
Sierocinski P, Stilwell P, Padfield D, Bayer F, Buckling A. The ecology of scale: impact of volume on coalescence and function in methanogenic communities. Interface Focus 2023; 13:20220089. [PMID: 37303743 PMCID: PMC10251116 DOI: 10.1098/rsfs.2022.0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/05/2023] [Indexed: 06/13/2023] Open
Abstract
Engineered ecosystems span multiple volume scales, from a nano-scale to thousands of cubic metres. Even the largest industrial systems are tested in pilot scale facilities. But does scale affect outcomes? Here we look at comparing different size laboratory anaerobic fermentors to see if and how the volume of the community affects the outcome of community coalescence (combining multiple communities) on community composition and function. Our results show that there is an effect of scale on biogas production. Furthermore, we see a link between community evenness and volume, with smaller scale communities having higher evenness. Despite those differences, the overall patterns of community coalescence are very similar at all scales, with coalescence leading to levels of biogas production comparable with that of the best-performing component community. The increase in biogas with increasing volume plateaus, suggesting there is a volume where productivity stays stable over large volumes. Our findings are reassuring for ecologists studying large ecosystems and industries operating pilot scale facilities, as they support the validity of pilot scale studies in this field.
Collapse
Affiliation(s)
- Pawel Sierocinski
- ESI, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Peter Stilwell
- ESI, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Daniel Padfield
- ESI, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Florian Bayer
- ESI, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Angus Buckling
- ESI, Biosciences, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| |
Collapse
|
7
|
Li C, Li X, Min K, Liu T, Li D, Xu J, Zhao Y, Li H, Chen H, Hu F. Copiotrophic taxa in pig manure mitigate nitrogen limitation of soil microbial communities. CHEMOSPHERE 2022; 301:134812. [PMID: 35523296 DOI: 10.1016/j.chemosphere.2022.134812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Microbial nitrogen (N) limitation is a common problem in terrestrial ecosystems. Pig manure, a type of solid waste, is increasingly applied to improve soil N availability in agriculture through inputs of organic matter and inorganic N. Pig manure application also introduces a lot of exogenous microorganisms, which have distinctly different N requirements and metabolic properties, into the resident soil microbial community. However, the impacts of these manure-borne microorganisms on soil N cycling have not been well determined. Here, we investigated effects of manure-borne microorganisms on the N limitation of soil microorganisms using an ecoenzymatic stoichiometry analysis. We monitored microbial communities over a 90-day period in a laboratory-controlled experiment with four treatments: (1) non-sterilized soil mixed with non-sterilized manure (S-M), (2) non-sterilized soil mixed with sterilized manure (S-sM), (3) sterilized soil mixed with non-sterilized manure (sS-M), and (4) non-sterilized soil without manure addition (S, the control). The microbial N limitations were significantly mitigated in both S-M and sS-M. By contrast, the S-sM and S showed high levels of microbial N limitation, likely stemming from differences in the microbial functional composition. We found chitin-degrading bacteria were the dominant copiotrophic manure-borne bacteria associated with N mineralization, and they may improve soil N availability. We further identified several copiotrophic manure-borne bacteria in S-M and sS-M, and their abundances had significantly negative correlation with the level of N limitation and significantly positive correlation with the stoichiometric homeostasis. As these copiotrophic taxa can maintain homeostasis through regulating enzymatic activities, our results indicate that copiotrophic taxa in pig manure contribute to the mitigation of soil microbial N limitation. Our study also highlights the invasiveness capacity of manure-borne microorganisms in soil and evaluates the biotic effects of manure application on soil N cycling.
Collapse
Affiliation(s)
- Chunkai Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xianping Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Kaikai Min
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Ting Liu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Dejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Jingjing Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yexin Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huixin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210014, China.
| | - Hao Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
8
|
Including climate change to predict the global suitable area of an invasive pest: Bactrocera correcta (Diptera: Tephritidae). Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|