1
|
Chen X, Yang M, An L, He J, Lai K, Wang Y. A solar-driven nanocellulose Janus aerogel with excellent floating stability and dual functions of oil-water separation and photocatalytic degradation of organic pollutants. Int J Biol Macromol 2024; 278:134698. [PMID: 39147337 DOI: 10.1016/j.ijbiomac.2024.134698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
Effective and practical cleanup of viscous crude oil spills is extremely important in real harsh marine environments. Herein, we designed a solar-driven, nanocellulose-based Janus aerogel (Janus-A) with excellent floating stability and dual function of oil-water separation and degradation of aqueous organic pollutants. Janus-A, with its amphiprotic nature, was prepared through polypyrrole (PPy) deposition, freeze-drying, octyltrichlorosilane (OTS) impregnation, TiO2 spraying on the bottom surface, and UV irradiation treatment. The photothermal conversion effect of PPy coating raised the surface temperature of aerogel to 75.8 °C within 6 min under one simulated solar irradiation, which greatly reduced the viscosity of the crude oil and increased the absorption capacity of the aerogel to 36.7 g/g. Benefiting from the balance between the buoyancy generated by the hydrophobic part and water absorption of the hydrophilic part, Janus-A showed excellent floating stability under simulated winds and waves. In addition, Janus-A exhibited high degradation efficiency for organic pollutants in water owing to the synergistic photocatalytic properties of TiO2 and PPy. These excellent performances make Janus-A ideal for integrated water-oil separation and water remediation.
Collapse
Affiliation(s)
- Xinyue Chen
- School of Water and Environment, Chang'an University, China
| | - Mingyan Yang
- School of Water and Environment, Chang'an University, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, China.
| | - Linyu An
- School of Water and Environment, Chang'an University, China
| | - Jing He
- School of Water and Environment, Chang'an University, China
| | - Kunrong Lai
- School of Water and Environment, Chang'an University, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of the Ministry of Education, Chang'an University, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, China
| | - Yangyang Wang
- School of Water and Environment, Chang'an University, China
| |
Collapse
|
2
|
Yan D, Yin K, He Y, Liu Y, Wang L, Deng Q, He J, Awan SU, Khalil ASG. Recent advances in functional micro/nanomaterials for removal of crude oil via thermal effects. NANOSCALE 2024; 16:7341-7362. [PMID: 38511991 DOI: 10.1039/d4nr00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Crude oil is one of the most widely used energy and industrial raw materials that is crucial to the world economy, and is used to produce various petroleum products. However, crude oil often spills during extraction, transportation and use, causing negative impacts on the environment. Thus, there is a high demand for products to remediate leaked crude oil. Among them, oleophilic and hydrophobic adsorbents can absorb crude oil through thermal effects and are research hotspots. In this review, we first present an overview of wettability theory, the heating principles of various thermal effects, and the theory of reducing crude oil viscosity by heating. Then we discuss adsorbents based on different heating methods including the photothermal effect, Joule heating effect, alternating magnetic field heating effect, and composite heating effect. Preparation methods and oil adsorption performance of adsorbents are summarized. Finally, the advantages and disadvantages of various heating methods are briefly summarized, as well as the prospects for future research.
Collapse
Affiliation(s)
- Duanhong Yan
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Yuchun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Yao Liu
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Jun He
- Hunan Key Laboratory of Nanophotonic and Devices, School of Physics, Central South University, Changsha, 410083, China.
| | - Saif Ullah Awan
- Department of Electrical Engineering, NUST College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad 54000, Pakistan
| | - Ahmed S G Khalil
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), 179 New Borg El-Arab City, Alexandria, Egypt
- Environmental and Smart Technology Group, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
3
|
Zhang W, Zhang M, Chen Q, Liu X. Stereo-complex polylactide composite aerogel for crude oil adsorption. Int J Biol Macromol 2024; 263:130283. [PMID: 38378113 DOI: 10.1016/j.ijbiomac.2024.130283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
Adsorption materials are a cost-effective and simple method for oil spill remediation, but their efficiency is limited by high crude oil viscosity. Additionally, non-degradable materials pose another risk of secondary pollution, such as microplastic debris. Here, an environmentally-friendly stereo-complex polylactide composite (SCC) aerogel were developed via water-assisted thermally induced phase separation. The SCC with 3 wt% carbon nanotubes had a hierarchical structure of micro/nanoscale pores and high content of stereo-complex crystallites (35.7 %). Along with the excellent water repellency (water contact angle: 157°), SCC aerogel was 2.7 times as resistant to hydrolysis than poly(l-lactide) aerogel (Ph = 13, 37 °C). Additionally, a maximum absorption capacity of 41.2 g g-1 and over 97 % oil/water separation efficiency after 10 cycles were obtained in low viscosity conditions; while in high viscosity conditions, it displayed excellent photothermal performance, reaching a surface temperature of 85 °C under 1 sunlight, reducing crude oil absorption time from 42 min to 60 s (97.6 %-time savings). Moreover, it facilitated continuous crude oil spill recovery under sunlight with an adsorption rate of 3.3 × 104 kg m-3 h-1. The SCC aerogel presents a potential route for utilizing solar energy in crude oil adsorption applications without additional environmental burden.
Collapse
Affiliation(s)
- Weijian Zhang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Mingtao Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xianhu Liu
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
4
|
Chen J, Ni Y, Gou Y, Zhu T, Sun L, Chen Z, Huang J, Yang D, Lai Y. Hydrophobic organogel sorbent and its coated porous substrates for efficient oil/water emulsion separation and effective spilled oil remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132674. [PMID: 37801974 DOI: 10.1016/j.jhazmat.2023.132674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Frequent offshore oil leakage accidents and large quantities of oily-wastewater produced in industry and daily life bring huge challenges to global water purification. The adaptability and stability of organogels as adsorbent materials have shown wide application prospects in the field of oil-water separation. Herein, the organogels displayed stable hydrophobic/lipophilic properties with high absorption ability (1200 wt./wt%), efficient sorption of multiple emulsions (>99.0%), and good reusability. More importantly, the organogels were successfully assembled with 2D/3D substrates to achieve excellent sorption capacity (102.5 g/g) and recycling performance (50 cycles). The gel-carbon black assembled on MS (GCB-MS) sorbent with excellent photothermal conversion performance, and can rapidly heat the surface to 70.4 °C under 1.0 sunlight radiation (1.0 kW/m2) and achieved an ultra-high sorption capacity of about 103 g/g for viscous crude oil. Meanwhile, the GCB-MS was combined with a pump to build continuous oil spill cleaning equipment to achieve a super-fast cleanup rate of 6.83 g/min. The developed hydrophobic organogels had been expanded unprecedentedly to realize the comprehensive treatment of oily-wastewater in complex environments, including layered oils, emulsions, and viscous crude oil spill, which provided an effective path for the comprehensive treatment of oily wastewater in complex environments.
Collapse
Affiliation(s)
- Jiajun Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yukui Gou
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Tianxue Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Lan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| | - Jianying Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| | - Dapeng Yang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, PR China.
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| |
Collapse
|
5
|
Li Z, Shan Z, Tian Q, Peng X, Yue X, Qiu F, Zhang T. Facile fabrication of solar-heating and Joule-heating hyperelastic MXene-modified sponge for fast all-weather clean-up of viscous crude oil spill. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130930. [PMID: 36746083 DOI: 10.1016/j.jhazmat.2023.130930] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Developing rational sorbent for viscous crude oil clean-up is still a daunting challenge, which requires rapid oil-uptake capability and scalable fabrication process. Herein, a heatable hydrophobic sponge sorbent (H-MXene/PVA/MS) with excellent light/Joule-heating performances was fabricated by a simple and feasible top-down approach. MXene nanosheets firmly coated on the substrate skeleton gave the sorbent outstanding ability to convert solar/electricity into heat rapidly due to the localized surface plasmon resonance (LSPR) effect and ultrahigh metallic conductivity. The surface temperature of H-MXene/PVA/MS could reach about 80 ℃ under 1.0 sun irradiation within 30 s and 125 ℃ under a low applying voltage of 6 V within 25 s. The rapid and sufficient heat generation on the sorbent would effectively warm the surrounding oil and accelerate its absorption. The oil absorption rate under 1.0 sun irradiation (1 kW/m2) improved about 41.5 times compared to the unheated sorbent. Moreover, the sorbent showed practical application potential in harsh environments due to its high coating firmness, durability, elasticity, and suitability for large-scale production and operations. Thus, the easily-prepared H-MXene/PVA/MS sorbent, which mainly focuses on solar-heating, supplemented by Joule-heating, provides an efficient and energy-efficient strategy for addressing large-scale viscous oil spill clean-up.
Collapse
Affiliation(s)
- Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Zhaoyu Shan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, Jiangxi Province, China
| | - Xuejie Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
6
|
Chen J, Sun M, Ni Y, Zhu T, Huang J, Li X, Lai Y. Superhydrophobic polyurethane sponge for efficient water-oil emulsion separation and rapid solar-assisted highly viscous crude oil adsorption and recovery. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130541. [PMID: 36493650 DOI: 10.1016/j.jhazmat.2022.130541] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Rapid and efficient cleaning of oily wastewater and high viscosity crude oil spills is still a global challenge. Conventional three-dimensional porous adsorbents are ineffective for oil-water separation in harsh environment and are restricted to the low fluidity of high viscosity crude oil at room temperature. Increasing temperature can enormously improve the fluidity of viscous crude oil. Herein, the polydimethylsiloxane (PDMS) /carbon black (CB) -modified polyurethane sponge (PU) were prepared by a simple one-step dip-coating method. PDMS/CB@PU (PCPU) exhibits high adsorption capacity to various oils and organic liquid (28.5-68.7 g/g), strong mechanical properties (500 cycles at 50%), outstanding reusability (100 cycles of adsorption and desorption) and excellent environmental stability due to the special PDMS/CB coating. The maximum surface temperature of PCPU sponge can reach 84.7 ℃ under 1 sunlight irradiation. Therefore, the PCPU sponge can rapidly heat and enhance the fluidity of viscous crude oil, significantly speeding up the viscous oil recovery process with the maximum adsorption capacity of 44.7 g/g. In addition, the PCPU sponge can also combine with the vacuum pump to realize the continuous and rapid repair of viscous oil spills from the seawater surface. In consideration of its simple preparation, cost-effectiveness and high oil absorption ability, this solar-assisted self-heating adsorbent provides a new direction for large-scale cleanup and recycling of viscous crude oil spill on the seawater surface.
Collapse
Affiliation(s)
- Jiajun Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Ming Sun
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yimeng Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Tianxue Zhu
- Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China
| | - Xiao Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou 362801, PR China.
| |
Collapse
|
7
|
Guan Y, Wang Z, Bao M, Chen X, Dong L, Shen Y, Li Y. Multi-energies assisted and all-weather recovery of crude oil by superhydrophobic melamine sponge. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130131. [PMID: 36240586 DOI: 10.1016/j.jhazmat.2022.130131] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Efficient and safe recovery of high-viscosity marine crude oil spills is still a worldwide challenge. High-viscosity crude oil is difficult to be removed by traditional adsorbent materials. Although some recent developments in photothermal or electric-thermal oil-absorbing materials, the vertical heat transfer inside and the potential hazard of electrical leakage are difficult to be guaranteed. In order to overcome these problems, we polymerized dopamine (DA) in situ on the skeleton surface of the commercial melamine sponge (MS), and further coated the full-wavelength light-absorbing Fe3O4 NPs-Graphene (HF-G) on it to obtain the superhydrophobic sponge with excellent photothermal conversion effect, heat conductivity and magnetic heating capabilities (HF-G/PDA@MS). When the thickness of sponge is 5 mm, the HF-G/PDA@MS shows excellent vertical heat conductivity ability, and can absorb about 80 g/g. It also can be combined with an extra electric-heating device to achieve continuous heating to reduce the viscosity and recover crude oil at night or extreme weather. In addition, the temperature of HF-G/PDA@MS can reach about 40 °C by electromagnetic induction heater, indicating that we can use multiple energies-assisted modes to heat the HF-G/PDA@MS to. This work provides a promising solution and theoretical support for all-weather solving offshore crude oil spills pollution and recovery.
Collapse
Affiliation(s)
- Yihao Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Xiuping Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Limei Dong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yun Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System/Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 266100, Qingdao, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, PR China.
| |
Collapse
|
8
|
Song C, Jin Y, Gu X, Shi J. A solar-driven self-repairing sponge for efficient recovery of crude oil. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Habibi N, Bagherifard M, Pourjavadi A. Facile fabrication of flame-resistant, photothermal, and electrothermal polyurethane sponge: A promising sorbent for all-weather recovery of viscous crude oil spills from seawater. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Li X, Yang Z, Peng Y, Zhang F, Lin M, Zhang J, Lv Q, Dong Z. Self-powered aligned porous superhydrophobic sponge for selective and efficient absorption of highly viscous spilled oil. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129018. [PMID: 35504133 DOI: 10.1016/j.jhazmat.2022.129018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/10/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Crude oil spills have caused catastrophic damage to marine ecosystems and become a global challenge. Although various liquid absorption materials have been developed, manual operations such as pumping and electric heating are still required in the face of highly viscous spilled oils. Efficient and autonomous crude oil spill cleanup methods are urgently needed. Here, inspired by the unidirectional microstructure of tree xylem, we report a sponge (SPC-Sponge), which combines superhydrophobic property and aligned porous structures, prepared from a ternary suspension (hydrophobic silica nanoparticles, polyurethane, and cellulose nanofibers) by single-step directional freeze casting. SPC-Sponge not only effectively overcome the limitations of traditional synthetic modification methods on the shape and size of porous sponge materials, but also has excellent oil-water selection function, liquid absorption speed, and liquid absorption capacity compared with common porous materials. Moreover, the sponge can self-absorb highly viscous crude oil of around 80,000 mPa‧s on seawater without external energy and human intervention. By adding multi-walled carbon nanotubes, the sponge can implement in-situ solar heating of crude oil, and the absorption speed is further improved. Given its unique structural design and superwetting property, this SPC-Sponge provides an efficient remediation approach for viscous oil spills.
Collapse
Affiliation(s)
- Xiaochen Li
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China; CNPC Bohai Drilling Engineering Company Limited, Tianjin 300280, People's Republic of China
| | - Zihao Yang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Ying Peng
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Fengfan Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Meiqin Lin
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Juan Zhang
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Qichao Lv
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China
| | - Zhaoxia Dong
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, People's Republic of China; School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, People's Republic of China.
| |
Collapse
|
11
|
Monolithic robust hybrid sponge with enhanced light adsorption and ultrafast photothermal heating rate for rapid oil cleaning. J Colloid Interface Sci 2022; 628:233-241. [DOI: 10.1016/j.jcis.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022]
|
12
|
Robust multifunctional rGO/MXene@PPS fibrous membrane for harsh environmental applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Habibi N, Pourjavadi A. Thermally Conductive and Superhydrophobic Polyurethane Sponge for Solar-Assisted Separation of High-Viscosity Crude Oil from Water. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7329-7339. [PMID: 35089699 DOI: 10.1021/acsami.1c22594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rapid and effective separation of high-viscosity heavy crude oil from seawater is a worldwide challenge. Herein, an ultralow density, photothermal, superhydrophobic, and thermally conductive polyurethane/polyaniline/hexagonal boron nitride@Fe3O4/polyacrylic-oleic acid resin sponge (PU/PANI/h-BN@Fe3O4/AR) was fabricated with a water contact angle (WCA) of 158°, thermal conductivity of 0.76 W m-1 K-1, density of 0.038 g cm-3, limited oxygen index (LOI) of 28.82%, and porosity of 97.97% and used for solar-assisted separation of high-viscosity crude oil from water. Photothermal components were composed of PANI and Fe3O4, while h-BN particles were used as thermally conductive and flame retardant fillers. Therefore, the illuminated sunlight irradiation on the modified sponge was converted to heat due to the activity of photothermal components. The produced heat was rapidly transferred to the environment due to the presence of h-BN for increasing the temperature of the high-viscosity crude oil and reducing oil viscosity that helped to promote its fluidity and effective absorption. The crude oil absorption capacity of this sponge increased from 4 to 57 g g-1 under irradiation of a sunlight simulator (power: 1 sun: 1 kW m-2) for 17 min due to oil viscosity reduction from 2.46 × 104 to below 100 mPa s followed by an increase in the surface temperature from 26 to 89 °C. Also, the oil absorption capacity was evaluated in a static state (172 g g-1 for chloroform), under different external magnetic fields (140.7 g g-1 for gasoline), and in a continuous state, which was 65,100 times of its own weight in the gasoline filtration process. The PU/PANI/h-BN@Fe3O4/AR sponge exhibited excellent stability against 20 times of reusing, mechanical compression, abrasion, immersing in various pH solutions, seawater, and high temperature. In all, the results confirmed that the prepared sponge is an excellent absorbent for organic solvents and highly viscous crude oil in the absence and presence of sunlight irradiation.
Collapse
Affiliation(s)
- Navid Habibi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| |
Collapse
|
14
|
Jin L, Gao Y, Huang Y, Ou M, Liu Z, Zhang X, He C, Su B, Zhao W, Zhao C. Mussel-Inspired and In Situ Polymerization-Modified Commercial Sponge for Efficient Crude Oil and Organic Solvent Adsorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2663-2673. [PMID: 34984908 DOI: 10.1021/acsami.1c16230] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oil spills and pollution of oily wastewater from the industrial field have not only caused serious economic losses but also imposed a huge threat to human beings. To solve these issues, the development of advanced materials and technologies for the purification of oily wastewater has garnered great concern and become a central topic. Hence, a superhydrophobic polyurethane (PU) sponge adsorbent is designed via mussel-inspired coatings by double bonds to PU sponge, followed by in situ polymerization with 1-hexadecene. The prepared PU sponge adsorbent (PU@DB@16ene sponge) showed outstanding mechanical properties including low density, high porosity, and compression recovery ability. Moreover, the prepared PU@DB@16ene sponge showed excellent adsorption of oils and organic solvents (up to 187 g g-1) and exhibited superior recyclability. Particularly, when the PU@DB@16ene sponge was applied in the continuous and rapid separation of oils and organic solvents, it still showed desired properties at a rapid velocity of 8.3 L m-3 s-1. Additionally, the PU@DB@16ene sponge could not only adsorb organic solvents in laboratories but also adsorb crude oil and industrial waxy oil in practice. Therefore, we proposed a simple and convenient method to construct PU sponge absorbents with great application prospects, which would be highly valuable for crude oil and organic solvents cleanup.
Collapse
Affiliation(s)
- Lunqiang Jin
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610207, People's Republic of China.,College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yusha Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yanping Huang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Minghui Ou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhen Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Baihai Su
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610207, People's Republic of China.,Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.,Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, People's Republic of China.,College of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China.,Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
15
|
Superhydrophobic polyaniline absorbent for solar-assisted adsorption of highly viscous crude oil. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Li Z, Tian Q, Xu J, Sun S, Cheng Y, Qiu F, Zhang T. Easily Fabricated Low-Energy Consumption Joule-Heated Superhydrophobic Foam for Fast Cleanup of Viscous Crude Oil Spills. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51652-51660. [PMID: 34677939 DOI: 10.1021/acsami.1c13574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Effective cleanup of viscous crude oil spills remains a persistent and crippling challenge. Herein, this work presents a Joule-heated superhydrophobic flower-like Cu8(PO3OH)2(PO4)4·7H2O-coated copper foam (SHB-CF@CP) for rapid cleanup of viscous crude oil spills via a facile strategy. The SHB-CF@CP shows outstanding water repellency and excellent stability of hydrophobicity in harsh environments. Due to the high electrical conductivity and thermal conductivity, it requires lower power energy consumption (less than 1 V of voltage input) to raise the temperature significantly, which dramatically reduces the viscosity of crude oil (from ∼2 × 105 to ∼60 mPa s) and then increases the oil absorption rate, effectively avoiding the poor mobility and ineffective absorption of viscous crude oil. Notably, the SHB-CF@CP can achieve continuous and quick cleanup of crude oil under in situ pumping force. The high-performance Joule-heated SHB-CF@CP sorbent with a strong porous skeleton, corrosion resistance, and low predicted operational costs holds a promise of promoting its practical applications in the cleanup of intractable and large-area viscous oil spills.
Collapse
Affiliation(s)
- Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Jicheng Xu
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine and Chemical Engineering, Zhenjiang College, Zhenjiang 212028, China
| | - Shouzhen Sun
- Liaohe Oilfield Company of China National Petroleum Corporation, Panjin 124011, Liaoning Province, China
| | - Ying Cheng
- School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| |
Collapse
|