1
|
Iaculli D, Ballet S. Peptide libraries: from epitope mapping to in-depth high-throughput analysis. Trends Pharmacol Sci 2024; 45:579-582. [PMID: 38724411 DOI: 10.1016/j.tips.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 07/08/2024]
Abstract
Peptide arrays are a valuable instrument in the characterization of protein-protein interactions (PPIs) and immunogenic regions. New methods were developed to exploit the high-throughput potential of peptide arrays to obtain more in-depth information, replacing traditional resource-intensive experiments. Here, we discuss the recent advances in peptide-array-based technologies and the remaining challenges.
Collapse
Affiliation(s)
- Debora Iaculli
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, B-1050 Brussels, Belgium.
| |
Collapse
|
2
|
Rrustemi T, Meyer K, Roske Y, Uyar B, Akalin A, Imami K, Ishihama Y, Daumke O, Selbach M. Pathogenic mutations of human phosphorylation sites affect protein-protein interactions. Nat Commun 2024; 15:3146. [PMID: 38605029 PMCID: PMC11009412 DOI: 10.1038/s41467-024-46794-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Despite their lack of a defined 3D structure, intrinsically disordered regions (IDRs) of proteins play important biological roles. Many IDRs contain short linear motifs (SLiMs) that mediate protein-protein interactions (PPIs), which can be regulated by post-translational modifications like phosphorylation. 20% of pathogenic missense mutations are found in IDRs, and understanding how such mutations affect PPIs is essential for unraveling disease mechanisms. Here, we employ peptide-based interaction proteomics to investigate 36 disease-associated mutations affecting phosphorylation sites. Our results unveil significant differences in interactomes between phosphorylated and non-phosphorylated peptides, often due to disrupted phosphorylation-dependent SLiMs. We focused on a mutation of a serine phosphorylation site in the transcription factor GATAD1, which causes dilated cardiomyopathy. We find that this phosphorylation site mediates interaction with 14-3-3 family proteins. Follow-up experiments reveal the structural basis of this interaction and suggest that 14-3-3 binding affects GATAD1 nucleocytoplasmic transport by masking a nuclear localisation signal. Our results demonstrate that pathogenic mutations of human phosphorylation sites can significantly impact protein-protein interactions, offering insights into potential molecular mechanisms underlying pathogenesis.
Collapse
Affiliation(s)
| | - Katrina Meyer
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Ihnestraße 63, 14195, Berlin, Germany
| | - Yvette Roske
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Bora Uyar
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Altuna Akalin
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Kanagawa, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Oliver Daumke
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustraße 6, Berlin, Germany
| | - Matthias Selbach
- Max Delbrück Center (MDC), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
3
|
Georgi JA, Stasik S, Kramer M, Meggendorfer M, Röllig C, Haferlach T, Valk P, Linch D, Herold T, Duployez N, Taube F, Middeke JM, Platzbecker U, Serve H, Baldus CD, Muller-Tidow C, Haferlach C, Koch S, Berdel WE, Woermann BJ, Krug U, Braess J, Hiddemann W, Spiekermann K, Boertjes EL, Hills RK, Burnett A, Ehninger G, Metzeler K, Rothenberg-Thurley M, Dufour A, Dombret H, Pautas C, Preudhomme C, Fenwarth L, Bornhäuser M, Gale R, Thiede C. Prognostic impact of CEBPA mutational subgroups in adult AML. Leukemia 2024; 38:281-290. [PMID: 38228680 PMCID: PMC10844079 DOI: 10.1038/s41375-024-02140-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Despite recent refinements in the diagnostic and prognostic assessment of CEBPA mutations in AML, several questions remain open, i.e. implications of different types of basic region leucin zipper (bZIP) mutations, the role of co-mutations and the allelic state. Using pooled primary data analysis on 1010 CEBPA-mutant adult AML patients, a comparison was performed taking into account the type of mutation (bZIP: either typical in-frame insertion/deletion (InDel) mutations (bZIPInDel), frameshift InDel or nonsense mutations inducing translational stop (bZIPSTOP) or single base-pair missense alterations (bZIPms), and transcription activation domain (TAD) mutations) and the allelic state (single (smCEBPA) vs. double mutant (dmCEBPA)). Only bZIPInDel patients had significantly higher rates of complete remission and longer relapse free and overall survival (OS) compared with all other CEBPA-mutant subgroups. Moreover, co-mutations in bZIPInDel patients (e.g. GATA2, FLT3, WT1 as well as ELN2022 adverse risk aberrations) had no independent impact on OS, whereas in non-bZIPInDel patients, grouping according to ELN2022 recommendations added significant prognostic information. In conclusion, these results demonstrate bZIPInDel mutations to be the major independent determinant of outcome in CEBPA-mutant AML, thereby refining current classifications according to WHO (including all dmCEBPA and smCEBPA bZIP) as well as ELN2022 and ICC recommendations (including CEBPA bZIPms).
Collapse
Affiliation(s)
- Julia-Annabell Georgi
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Stasik
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | | | - Christoph Röllig
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Peter Valk
- Erasmus University Medical Center, Rotterdam, Netherlands
| | - David Linch
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Nicolas Duployez
- Institut de Recherche contre le Cancer de Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Franziska Taube
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jan Moritz Middeke
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Uwe Platzbecker
- Klinik und Poliklinik fur Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Hubert Serve
- Medizinische Klinik 2, Universitätsklinikum Frankfurt, Frankfurt am Main, Germany
| | - Claudia D Baldus
- Klinik für Innere Medizin II, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Carsten Muller-Tidow
- Klinik für Hämatologie, Onkologie und Rheumatologie, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Sarah Koch
- MLL Münchner Leukämielabor GmbH, Munich, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, University Hospital Münster, Münster, Germany
| | | | - Utz Krug
- Department of Medicine 3, Klinikum Leverkusen, Leverkusen, Germany
| | - Jan Braess
- Department of Oncology and Hematology, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Wolfgang Hiddemann
- Department of Medicine III, University Hospital LMU Munich, Munich, Germany
| | | | | | - Robert K Hills
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - Alan Burnett
- Department of Haematology, Cardiff University, University Hospital of Wales, Cardiff, UK
| | | | - Klaus Metzeler
- Klinik und Poliklinik fur Hämatologie, Zelltherapie und Hämostaseologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | | | - Annika Dufour
- Department of Medicine III, University Hospital LMU Munich, Munich, Germany
| | - Hervé Dombret
- Hôpital Saint-Louis (AP-HP), EA 3518, Université de Paris, Paris, France
| | - Cecile Pautas
- Service d'Hématologie et de thérapie cellulaire, Hôpital Henri Mondor, Créteil, France
| | - Claude Preudhomme
- Institut de Recherche contre le Cancer de Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Laurene Fenwarth
- Institut de Recherche contre le Cancer de Lille, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Martin Bornhäuser
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Nationales Zentrum für Tumorerkrankungen (NCT), Dresden, Germany
| | - Rosemary Gale
- Department of Haematology, UCL Cancer Institute, London, UK
| | - Christian Thiede
- Medizinische Klinik und Poliklinik 1, Medizinische Fakultät und Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- AgenDix GmbH, Dresden, Germany.
| |
Collapse
|
4
|
Czerczak-Kwiatkowska K, Kaminska M, Fraczyk J, Majsterek I, Kolesinska B. Searching for EGF Fragments Recreating the Outer Sphere of the Growth Factor Involved in Receptor Interactions. Int J Mol Sci 2024; 25:1470. [PMID: 38338748 PMCID: PMC10855902 DOI: 10.3390/ijms25031470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The aims of this study were to determine whether it is possible to use peptide microarrays obtained using the SPOT technique (immobilized on cellulose) and specific polyclonal antibodies to select fragments that reconstruct the outer sphere of proteins and to ascertain whether the selected peptide fragments can be useful in the study of their protein-protein and/or peptide-protein interactions. Using this approach, epidermal growth factor (EGF) fragments responsible for the interaction with the EGF receptor were searched. A library of EGF fragments immobilized on cellulose was obtained using triazine condensing reagents. Experiments on the interactions with EGFR confirmed the high affinity of the selected peptide fragments. Biological tests on cells showed the lack of cytotoxicity of the EGF fragments. Selected EGF fragments can be used in various areas of medicine.
Collapse
Affiliation(s)
- Katarzyna Czerczak-Kwiatkowska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Marta Kaminska
- Division of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland;
| | - Justyna Fraczyk
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland;
| | - Beata Kolesinska
- Faculty of Chemistry, Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland; (K.C.-K.); (J.F.)
| |
Collapse
|
5
|
Perez-Hernandez D, Suarez-Artiles L, Jones MSO, Dittmar G. Using PrISMa to reveal the interactome of the human claudins family. STAR Protoc 2023; 4:102549. [PMID: 37756153 PMCID: PMC10542633 DOI: 10.1016/j.xpro.2023.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/26/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Here, we provide a protocol for the systematic screening of protein-protein interactions mediated by short linear motifs using the Protein Interaction Screen on a peptide Matrix (PrISMa) technique. We describe how to pull down interacting proteins in a parallelized manner and identify them by mass spectrometry. Finally, we describe a bioinformatic workflow necessary to identify highly probable interaction partners in the large-scale dataset. We describe the application of this method for the transient interactome of the claudin protein family. For complete details on the use and execution of this protocol, please refer to Suarez-Artiles et al.1.
Collapse
Affiliation(s)
- Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1A Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Lorena Suarez-Artiles
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle Str. 10, 13125 Berlin, Germany
| | - Mattson S O Jones
- Department of Infection and Immunity, Luxembourg Institute of Health, 1A Rue Thomas Edison, 1445 Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, 1A Rue Thomas Edison, 1445 Strassen, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, 2 avenue de l'Université, Campus Belval, 4365 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
6
|
Heyes E, Wilhelmson AS, Wenzel A, Manhart G, Eder T, Schuster MB, Rzepa E, Pundhir S, D'Altri T, Frank AK, Gentil C, Woessmann J, Schoof EM, Meggendorfer M, Schwaller J, Haferlach T, Grebien F, Porse BT. TET2 lesions enhance the aggressiveness of CEBPA-mutant acute myeloid leukemia by rebalancing GATA2 expression. Nat Commun 2023; 14:6185. [PMID: 37794021 PMCID: PMC10550934 DOI: 10.1038/s41467-023-41927-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
The myeloid transcription factor CEBPA is recurrently biallelically mutated (i.e., double mutated; CEBPADM) in acute myeloid leukemia (AML) with a combination of hypermorphic N-terminal mutations (CEBPANT), promoting expression of the leukemia-associated p30 isoform, and amorphic C-terminal mutations. The most frequently co-mutated genes in CEBPADM AML are GATA2 and TET2, however the molecular mechanisms underlying this co-mutational spectrum are incomplete. By combining transcriptomic and epigenomic analyses of CEBPA-TET2 co-mutated patients with models thereof, we identify GATA2 as a conserved target of the CEBPA-TET2 mutational axis, providing a rationale for the mutational spectra in CEBPADM AML. Elevated CEBPA levels, driven by CEBPANT, mediate recruitment of TET2 to the Gata2 distal hematopoietic enhancer thereby increasing Gata2 expression. Concurrent loss of TET2 in CEBPADM AML induces a competitive advantage by increasing Gata2 promoter methylation, thereby rebalancing GATA2 levels. Of clinical relevance, demethylating treatment of Cebpa-Tet2 co-mutated AML restores Gata2 levels and prolongs disease latency.
Collapse
Affiliation(s)
- Elizabeth Heyes
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Anna S Wilhelmson
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Wenzel
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Manhart
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Thomas Eder
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Mikkel B Schuster
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Edwin Rzepa
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria
| | - Sachin Pundhir
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Teresa D'Altri
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Katrine Frank
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Coline Gentil
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Woessmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Erwin M Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Jürg Schwaller
- Department of Biomedicine, University Children's Hospital Basel, Basel, Switzerland
| | | | - Florian Grebien
- University of Veterinary Medicine, Institute of Medical Biochemistry, Vienna, Austria.
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Bo T Porse
- The Finsen Laboratory, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Torcal Garcia G, Kowenz-Leutz E, Tian TV, Klonizakis A, Lerner J, De Andres-Aguayo L, Sapozhnikova V, Berenguer C, Carmona MP, Casadesus MV, Bulteau R, Francesconi M, Peiro S, Mertins P, Zaret K, Leutz A, Graf T. Carm1-arginine methylation of the transcription factor C/EBPα regulates transdifferentiation velocity. eLife 2023; 12:e83951. [PMID: 37365888 PMCID: PMC10299824 DOI: 10.7554/elife.83951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Here, we describe how the speed of C/EBPα-induced B cell to macrophage transdifferentiation (BMT) can be regulated, using both mouse and human models. The identification of a mutant of C/EBPα (C/EBPαR35A) that greatly accelerates BMT helped to illuminate the mechanism. Thus, incoming C/EBPα binds to PU.1, an obligate partner expressed in B cells, leading to the release of PU.1 from B cell enhancers, chromatin closing and silencing of the B cell program. Released PU.1 redistributes to macrophage enhancers newly occupied by C/EBPα, causing chromatin opening and activation of macrophage genes. All these steps are accelerated by C/EBPαR35A, initiated by its increased affinity for PU.1. Wild-type C/EBPα is methylated by Carm1 at arginine 35 and the enzyme's perturbations modulate BMT velocity as predicted from the observations with the mutant. Increasing the proportion of unmethylated C/EBPα in granulocyte/macrophage progenitors by inhibiting Carm1 biases the cell's differentiation toward macrophages, suggesting that cell fate decision velocity and lineage directionality are closely linked processes.
Collapse
Affiliation(s)
- Guillem Torcal Garcia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | | | - Tian V Tian
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Antonis Klonizakis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Jonathan Lerner
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Luisa De Andres-Aguayo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Valeriia Sapozhnikova
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Clara Berenguer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Marcos Plana Carmona
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Maria Vila Casadesus
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
- Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Romain Bulteau
- Laboratorie de Biologie et Modélisation de la Cellule, Université de LyonLyonFrance
| | - Mirko Francesconi
- Laboratorie de Biologie et Modélisation de la Cellule, Université de LyonLyonFrance
| | - Sandra Peiro
- Vall d’Hebron Institute of Oncology (VHIO)BarcelonaSpain
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Kenneth Zaret
- Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST)BarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| |
Collapse
|
8
|
Sandmann CL, Schulz JF, Ruiz-Orera J, Kirchner M, Ziehm M, Adami E, Marczenke M, Christ A, Liebe N, Greiner J, Schoenenberger A, Muecke MB, Liang N, Moritz RL, Sun Z, Deutsch EW, Gotthardt M, Mudge JM, Prensner JR, Willnow TE, Mertins P, van Heesch S, Hubner N. Evolutionary origins and interactomes of human, young microproteins and small peptides translated from short open reading frames. Mol Cell 2023; 83:994-1011.e18. [PMID: 36806354 PMCID: PMC10032668 DOI: 10.1016/j.molcel.2023.01.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/12/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.
Collapse
Affiliation(s)
- Clara-L Sandmann
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| | - Jana F Schulz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany
| | - Jorge Ruiz-Orera
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Marieluise Kirchner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | - Matthias Ziehm
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | - Eleonora Adami
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Maike Marczenke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Annabel Christ
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Nina Liebe
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Johannes Greiner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Aaron Schoenenberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Michael B Muecke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Ning Liang
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | | | - Zhi Sun
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John R Prensner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Thomas E Willnow
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Proteomics, 10117 Berlin, Germany
| | | | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13347 Berlin, Germany; Charité-Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
9
|
Perez-Hernandez D, Jones M, Dittmar G. Protein Interaction Screen on a Peptide Matrix (PrISMa). Methods Mol Biol 2023; 2690:269-280. [PMID: 37450154 DOI: 10.1007/978-1-0716-3327-4_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Protein-protein interactions (PPI) are essential to understanding the cellular function and key mechanisms necessary for life. Although understanding of the interactome and proteome has exploded due to high-throughput methods in the past decade, often limitations in technical methods result in a partial understanding of all PPI. Here we present a protocol dedicated to the Protein Interaction Screen on a peptide Matrix (PrISMa). PrISMa functions as a high-throughput screen unique to targeting weak and transient interactions often missed in other PPI methods. In addition, PrISMa also excels at the mapping of interactions across linear sequences of proteins that are commonly enriched in intrinsically disordered regions (IDRs) which cover 35-40% of the mammalian proteome. This protocol aims to expand the understanding of the targeted proteins by identifying transient interactors.
Collapse
Affiliation(s)
- Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Mattson Jones
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg.
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
10
|
Pan-claudin family interactome analysis reveals shared and specific interactions. Cell Rep 2022; 41:111588. [DOI: 10.1016/j.celrep.2022.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
|
11
|
Melder FTI, Lindemann P, Welle A, Trouillet V, Heißler S, Nazaré M, Selbach M. Compound Interaction Screen on a Photoactivatable Cellulose Membrane (CISCM) Identifies Drug Targets. ChemMedChem 2022; 17:e202200346. [PMID: 35867055 PMCID: PMC9826412 DOI: 10.1002/cmdc.202200346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 01/11/2023]
Abstract
Identifying the protein targets of drugs is an important but tedious process. Existing proteomic approaches enable unbiased target identification but lack the throughput needed to screen larger compound libraries. Here, we present a compound interaction screen on a photoactivatable cellulose membrane (CISCM) that enables target identification of several drugs in parallel. To this end, we use diazirine-based undirected photoaffinity labeling (PAL) to immobilize compounds on cellulose membranes. Functionalized membranes are then incubated with protein extract and specific targets are identified via quantitative affinity purification and mass spectrometry. CISCM reliably identifies known targets of natural products in less than three hours of analysis time per compound. In summary, we show that combining undirected photoimmobilization of compounds on cellulose with quantitative interaction proteomics provides an efficient means to identify the targets of natural products.
Collapse
Affiliation(s)
- F. Teresa I. Melder
- Proteome Dynamics LabMax Delbruck Center for Molecular Medicine in the Helmholtz AssociationRobert-Roessle-Str. 1013125BerlinGermany
| | - Peter Lindemann
- Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)13125BerlinGermany
| | - Alexander Welle
- Institute of Functional Interfaces and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Vanessa Trouillet
- Institute for Applied Materials (IAM-ESS) and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Stefan Heißler
- Institute of Functional Interfaces and Karlsruhe Nano Micro Facility (KNMFi)Karlsruhe Institute of Technology (KIT)Hermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Marc Nazaré
- Medicinal ChemistryLeibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)13125BerlinGermany
| | - Matthias Selbach
- Proteome Dynamics LabMax Delbruck Center for Molecular Medicine in the Helmholtz AssociationRobert-Roessle-Str. 1013125BerlinGermany
| |
Collapse
|
12
|
|
13
|
Ramberger E, Suarez-Artiles L, Perez-Hernandez D, Haji M, Popp O, Reimer U, Leutz A, Dittmar G, Mertins P. A universal peptide matrix interactomics approach to disclose motif dependent protein binding. Mol Cell Proteomics 2021; 20:100135. [PMID: 34391889 PMCID: PMC8453223 DOI: 10.1016/j.mcpro.2021.100135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Protein–protein interactions mediated by intrinsically disordered regions are often based on short linear motifs (SLiMs). SLiMs are implicated in signal transduction and gene regulation yet remain technically laborious and notoriously challenging to study. Here, we present an optimized method for a protein interaction screen on a peptide matrix (PRISMA) in combination with quantitative MS. The protocol was benchmarked with previously described SLiM-based protein–protein interactions using peptides derived from EGFR, SOS1, GLUT1, and CEBPB and extended to map binding partners of kinase activation loops. The detailed protocol provides practical considerations for setting up a PRISMA screen and subsequently implementing PRISMA on a liquid-handling robotic platform as a cost-effective high-throughput method. Optimized PRISMA can be universally applied to systematically study SLiM-based interactions and associated post-translational modifications or mutations to advance our understanding of the largely uncharacterized interactomes of intrinsically disordered protein regions. Optimized protocol for analysis of peptide–protein interactions with peptide arrays. Detection of interactions affected by mutations or post-translational modifications. Mapping of interaction sites with overlapping peptide sequences. Implementation on a liquid-handling robotic platform.
Collapse
Affiliation(s)
- Evelyn Ramberger
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lorena Suarez-Artiles
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Mohamad Haji
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Oliver Popp
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Ulf Reimer
- JPT Peptide Technologies GmbH, Berlin, Germany
| | - Achim Leutz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Institute of Biology, Humboldt University of Berlin, Berlin, Germany.
| | - Gunnar Dittmar
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg; Department of Life Sciences and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg.
| | - Philipp Mertins
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; German Cancer Consortium (DKTK), partner site Berlin; Deutsches Zentrum für Herz-Kreislauf-Forschung e. V. (DZHK), Berlin, Germany.
| |
Collapse
|