1
|
Zhou W, Su M, Jiang T, Xie Y, Shi J, Ma Y, Xu K, Xu G, Li Y, Xu J. Cancer Stemness Online: A Resource for Investigating Cancer Stemness and Associations with Immune Response. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae058. [PMID: 39141443 PMCID: PMC11522875 DOI: 10.1093/gpbjnl/qzae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Cancer progression involves the gradual loss of a differentiated phenotype and the acquisition of progenitor and stem cell-like features, which are potential culprits of immunotherapy resistance. Although the state-of-the-art predictive computational methods have facilitated the prediction of cancer stemness, there remains a lack of efficient resources to accommodate various usage requirements. Here, we present the Cancer Stemness Online, an integrated resource for efficiently scoring cancer stemness potential at both bulk and single-cell levels. This resource integrates eight robust predictive algorithms as well as 27 signature gene sets associated with cancer stemness for predicting stemness scores. Downstream analyses were performed from five distinct aspects: identifying the signature genes of cancer stemness; exploring the associations with cancer hallmarks and cellular states; exploring the associations with immune response and the communications with immune cells; investigating the contributions to patient survival; and performing a robustness analysis of cancer stemness among different methods. Moreover, the pre-calculated cancer stemness atlas for more than 40 cancer types can be accessed by users. Both the tables and diverse visualizations of the analytical results are available for download. Together, Cancer Stemness Online is a powerful resource for scoring cancer stemness and expanding downstream functional interpretation, including immune response and cancer hallmarks. Cancer Stemness Online is freely accessible at http://bio-bigdata.hrbmu.edu.cn/CancerStemnessOnline.
Collapse
Affiliation(s)
- Weiwei Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Minghai Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Tiantongfei Jiang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yunjin Xie
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jingyi Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yingying Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Kang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Gang Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yongsheng Li
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150081, China
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
2
|
Human iPSC-derived-keratinocytes, a useful model to identify and explore pathological phenotype of Epidermolysis Bullosa Simplex. J Invest Dermatol 2022; 142:2695-2705.e11. [PMID: 35490743 DOI: 10.1016/j.jid.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/23/2022]
Abstract
Epidermolysis Bullosa Simplex (EBS), an autosomal dominant skin disorder, is characterized by skin fragility. Genetically, majority of cases are related to missense mutations in two keratin genes, KRT5 or KRT14, leading to cytolysis of basal keratinocytes and intraepidermal blistering. Progress towards identification of treatments have been hampered by incomplete understanding of the mechanisms underlying this disease, and availability of relevant and reliable in vitro models recapitulating the physiopathological mechanisms. Recent advances in stem cell field have fueled the prospect that these limitations could be overcome thanks to the availability of disease-specific human induced pluripotent stem cells (hiPSC). Here, we generated hiPSC-derived keratinocytes from patients carrying KRT5 dominant mutations and compared them to non-affected hiPSC-derived keratinocytes as well as their primary counterparts. Our results demonstrated that EBS hiPSC-derived keratinocytes displayed proliferative defects, increased capacity to migrate, alteration of ERK signaling pathway and cytoplasmic keratin filament aggregates as observed in primary EBS keratinocytes. Of interest, EBS hiPSC-derived keratinocytes exhibited a downregulation of hemidesmosomal proteins revealing the different effects of KRT5 mutations on keratin cytoskeletal organization. Combination of culture miniaturization and treatment with the chaperone molecule 4-PBA, our results demonstrated that hiPSC-derived keratinocytes represent a suitable model for identifying novel therapies for EBS.
Collapse
|
3
|
Mérien A, Tahraoui-Bories J, Cailleret M, Dupont JB, Leteur C, Polentes J, Carteron A, Polvèche H, Concordet JP, Pinset C, Jarrige M, Furling D, Martinat C. CRISPR gene editing in pluripotent stem cells reveals the function of MBNL proteins during human in vitro myogenesis. Hum Mol Genet 2021; 31:41-56. [PMID: 34312665 PMCID: PMC8682758 DOI: 10.1093/hmg/ddab218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
Alternative splicing has emerged as a fundamental mechanism for the spatiotemporal control of development. A better understanding of how this mechanism is regulated has the potential not only to elucidate fundamental biological principles, but also to decipher pathological mechanisms implicated in diseases where normal splicing networks are misregulated. Here, we took advantage of human pluripotent stem cells to decipher during human myogenesis the role of muscleblind-like (MBNL) proteins, a family of tissue-specific splicing regulators whose loss of function is associated with myotonic dystrophy type 1 (DM1), an inherited neuromuscular disease. Thanks to the CRISPR/Cas9 technology, we generated human-induced pluripotent stem cells (hiPSCs) depleted in MBNL proteins and evaluated the consequences of their losses on the generation of skeletal muscle cells. Our results suggested that MBNL proteins are required for the late myogenic maturation. In addition, loss of MBNL1 and MBNL2 recapitulated the main features of DM1 observed in hiPSC-derived skeletal muscle cells. Comparative transcriptomic analyses also revealed the muscle-related processes regulated by these proteins that are commonly misregulated in DM1. Together, our study reveals the temporal requirement of MBNL proteins in human myogenesis and should facilitate the identification of new therapeutic strategies capable to cope with the loss of function of these MBNL proteins.
Collapse
Affiliation(s)
- Antoine Mérien
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Julie Tahraoui-Bories
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Michel Cailleret
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | - Jean-Baptiste Dupont
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| | | | | | | | | | | | | | | | - Denis Furling
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de recherche en myologie, Paris, France
| | - Cécile Martinat
- INSERM/UEPS UMR 861, Paris Saclay University, I-STEM, 91100 Corbeil-Essonnes, France
| |
Collapse
|