1
|
Guo L, Li L, Wang X, Zhang Y, Cui F. Synthesis of pH-Sensitive Nitrogen-Doped Carbon Dots with Biological Imaging Function and Their Application in Cu 2+ and Fe 2+ Determination by Ratiometric Fluorescent Probes. ACS OMEGA 2023; 8:37098-37107. [PMID: 37841116 PMCID: PMC10569000 DOI: 10.1021/acsomega.3c04596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
pH-sensitive nitrogen-doped carbon dots (N-CDs) were synthesized using immature seeds of elm trees as a carbon source and ethylenediamine as a coreactant through a facile one-step hydrothermal method. The N-CDs were characterized using fluorescence spectroscopy, fluorescence lifetime, ultraviolet-visible absorption, X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy, as well as transmission electron microscopy. The N-CDs displayed excellent fluorescence properties and responded to pH changes. The N-CDs exhibited low toxicity and good biocompatibility and had the potential to be used for the biological imaging of HeLa cells and mung bean sprouts. Utilizing the mechanism of fluorescence resonance energy transfer, ratiometric fluorescent probes were prepared by simple mixing of N-CDs and fluorexon in a Britton-Robinson buffer solution. The ratiometric fluorescent probe was used to detect Cu2+ and Fe2+. The linear equations were RCu = -0.0591[Q] + 3.505 (R2 = 0.992) and RFe = -0.0874[Q] + 3.61 (R2 = 0.999). The corresponding limits of detection were 0.5 and 0.31 μM, respectively. The good results had been obtained in the actual samples detection.
Collapse
Affiliation(s)
- Liucheng Guo
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, Henan Engineering Laboratory for Bioconversion Technology
of Functional Microbes, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
- Luohe
Medical College, Luohe 462000, P. R. China
| | - Luyao Li
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, Henan Engineering Laboratory for Bioconversion Technology
of Functional Microbes, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
- College
of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xingxian Wang
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, Henan Engineering Laboratory for Bioconversion Technology
of Functional Microbes, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Yan Zhang
- College
of Food and Biological Engineering, Henan
University of Animal Husbandry and Economy, Zhengzhou, Henan 450000, P. R. China
| | - Fengling Cui
- Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, National Demonstration Center for Experimental Chemistry
Education, Henan Engineering Laboratory for Bioconversion Technology
of Functional Microbes, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
2
|
Chen SH, Jiang K, Liang YH, He JP, Xu BJ, Chen ZH, Wang ZY. Fine-tuning benzazole-based probe for the ultrasensitive detection of Hg 2+ in water samples and seaweed samples. Food Chem 2023; 428:136800. [PMID: 37433252 DOI: 10.1016/j.foodchem.2023.136800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Developing potentially toxic metal ion probes is significant for environment and food safety. Although Hg2+ probes have been extensively studied, small molecule fluorophores that can integrate two applications of visual detection and separation into one unit remain challenging to access. Herein, by incorporating triphenylamine (TPA) into tridentate skeleton with an acetylene bridge, 2,6-bisbenzimidazolpyridine-TPA (4a), 2,6-bisbenzothiazolylpyridine-TPA (4b) and 2,6-bisbenzothiazolylpyridine-TPA (4c) were first constructed, expectably showing distinct solvatochromism and dual-state emission properties. Since the diverse emission properties, the fluorescence detection of 4a-4b can be achieved with an ultrasensitive response (LOD = 10-11 M) and efficient removal of Hg2+. More interestingly, 4a-4b can not only be developed into paper/film sensing platform, but also reliably detect Hg2+ in real water and seaweed samples, with recoveries ranging from 97.3% to 107.8% and a relative standard deviation of less than 5%, indicating that they have excellent application potential in the field of environmental and food chemistry.
Collapse
Affiliation(s)
- Si-Hong Chen
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, PR China.
| | - Yao-Hui Liang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China
| | - Jin-Ping He
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China
| | - Bing-Jia Xu
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China.
| | - Zhao-Hua Chen
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University; Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine; GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, PR China; Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
3
|
Wang Z, Li Z, Huang J, Han S, Li X, Wang Z. A Selective and Reversible Fluorescent Probe for Cu
2+
and GSH Detection in Aqueous Environments. ChemistrySelect 2023. [DOI: 10.1002/slct.202300012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Yang K, Chen ZX, Zhou YJ, Chen Q, Yu SW, Luo SH, Wang ZY. Simple inorganic base promoted polycyclic construction using mucohalic acid as a C 3 synthon: synthesis and AIE probe application of benzo[4,5]imidazo[1,2- a]pyridines. Org Chem Front 2022. [DOI: 10.1039/d1qo01753e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using mucohalic acid as C3 synthon via a transition metal-free multicomponent reaction, an eco-friendly protocol to synthesize C1-functionalized benzo[4,5]imidazo[1,2-a]pyridines which can be applied as fluorescence probe for picric acid is described.
Collapse
Affiliation(s)
- Kai Yang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Zhi-Xi Chen
- College of pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Yong-Jun Zhou
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| | - Qi Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| | - Shi-Wei Yu
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou 510006, P. R. China
| |
Collapse
|