1
|
Li J, Fu L, Li Y, Sun W, Yi Y, Jia W, Li H, Liu H, Guo P, Wang Y, Shen Y, Zhang X, Lv Y, Qin B, Li W, Liu C, Liu L, Mazid MA, Lai Y, Esteban MA, Jiang Y, Wu L. A single-cell chromatin accessibility dataset of human primed and naïve pluripotent stem cell-derived teratoma. Sci Data 2024; 11:725. [PMID: 38956385 PMCID: PMC11220047 DOI: 10.1038/s41597-024-03558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024] Open
Abstract
Teratoma, due to its remarkable ability to differentiate into multiple cell lineages, is a valuable model for studying human embryonic development. The similarity of the gene expression and chromatin accessibility patterns in these cells to those observed in vivo further underscores its potential as a research tool. Notably, teratomas derived from human naïve (pre-implantation epiblast-like) pluripotent stem cells (PSCs) have larger embryonic cell diversity and contain extraembryonic lineages, making them more suitable to study developmental processes. However, the cell type-specific epigenetic profiles of naïve PSC teratomas have not been yet characterized. Using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we analyzed 66,384 cell profiles from five teratomas derived from human naïve PSCs and their post-implantation epiblast-like (primed) counterparts. We observed 17 distinct cell types from both embryonic and extraembryonic lineages, resembling the corresponding cell types in human fetal tissues. Additionally, we identified key transcription factors specific to different cell types. Our dataset provides a resource for investigating gene regulatory programs in a relevant model of human embryonic development.
Collapse
Affiliation(s)
- Jinxiu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Lixin Fu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wei Sun
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yao Yi
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Wenqi Jia
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Haiwei Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, Guangdong, 510530, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Pengcheng Guo
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Yang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Hangzhou, 310030, China
| | - Yue Shen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Changzhou, 213299, China
| | - Xiuqing Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
| | - Yuan Lv
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Baoming Qin
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chuanyu Liu
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yiwei Lai
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
- 3DCStar lab, BGI, Shenzhen, 518083, China
| | - Miguel A Esteban
- BGI Research, Shenzhen, 518083, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- 3DCStar lab, BGI, Shenzhen, 518083, China
| | - Yu Jiang
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
3
|
Cao M, Deng Y, Deng Y, Wu J, Yang C, Wang Z, Hou Q, Fu H, Ren Z, Xia X, Li Y, Wang W, Xu H, Liao X, Shu Y. Characterization of immature ovarian teratomas through single-cell transcriptome. Front Immunol 2023; 14:1131814. [PMID: 36936909 PMCID: PMC10020330 DOI: 10.3389/fimmu.2023.1131814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Immature ovarian teratomas are a type of malignant germ cell tumor composed of complicated cell types and are characterized by pathological features of immature neuroectodermal tubules/rosettes. However, there is a lack of understanding of patient-derived immature ovarian teratomas (PDT) at the single cell level. Moreover, whether stem cell lines derived from immature teratomas (CDT) can be used as models for research on PDT remains to be elucidated. Methods Single-cell RNA sequencing (scRNA-seq) and subsequent bioinformatic analysis was performed on three patient-derived immature ovarian teratomas (PDT) samples to reveal the heterogeneity, evolution trajectory, and cell communication within the tumor microenvironment of PDT. Validations were conducted in additional seven samples through multiplex immunofluorescence. Result A total of qualified 22,153 cells were obtained and divided into 28 clusters, which can match to the scRNA-seq annotation of CDT as well as human fetal Cell Atlas, but with higher heterogeneity and more prolific cell-cell crosstalk. Radial glia cells (tagged by SOX2) and immature neuron (tagged by DCX) exhibited mutually exclusive expression and differentiated along distinct evolutionary trajectory from cycling neural progenitors. Proportions of these neuroectodermal cell subtypes may play important roles in PDT through contributing to the internal heterogeneity of PDTs. Moreover, the immune cells in PDTs were infiltrated rather than teratoma-derived, with more abundant macrophage in immature neuron than those in radial glia cells, and the infiltrated macrophage subtypes (i.e., M1 and M2) were significantly correlated to clinical grade. Overall, suppressed evolution process and transcriptome regulation in neuroectodermal cells, reduced cell-cell crosstalk, higher M1/M2 proportion ratio, and enhanced T cell effects in tumor microenvironment are enriched in patients with favorable prognosis. Discussion This study provides a comprehensive profile of PDT at the single cell level, shedding light on the heterogeneity and evolution of neuroectodermal cells within PDTs and the role of immune cells within the tumor microenvironment. Also, our findings highlight the potential usage of CDTs as a model for research on PDT.
Collapse
Affiliation(s)
- Minyuan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiqi Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongyi Yang
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Zijun Wang
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huancheng Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixiang Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyang Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Li
- Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Wang
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Laboratory Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yang Shu, ; Xin Liao, ; Heng Xu,
| | - Xin Liao
- Department of Pathology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yang Shu, ; Xin Liao, ; Heng Xu,
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yang Shu, ; Xin Liao, ; Heng Xu,
| |
Collapse
|