1
|
Liu D, Yang Y, Chen Z, Fan Y, Liu J, Xu Y, Ahmed Z, Zhang J, Li F, Qi X, Song W, Zhu K, Gongque J, Li G, Huang B, Lei C. Temperature adaptation patterns in Chinese cattle revealed by TRPM2 gene mutation analysis. Anim Biotechnol 2024; 35:2299944. [PMID: 38164963 DOI: 10.1080/10495398.2023.2299944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cattle are sensitive to temperature fluctuations but adapt well to inclement weather conditions. When environmental temperatures exceed specific thresholds, heat stress becomes a critical concern for cattle. The TRPM2 gene, which resides on cattle chromosome 1 encodes a TRP channel protein, holding a unique capacity to sense temperature changes and facilitate rapid response to avoid heat stress. Here, we utilized the Bovine Genome Variation Database (BGVD) (http://animal.omics.pro/code/index.php/BosVar), and identified a missense mutation site, c.805A > G: p. Met269Val (rs527146862), within the TRPM2 gene. To elucidate the functional assessment of this mutation in temperature adaptation attributes of Chinese cattle, we genotyped 407 samples from 20 distinct breeds representing diverse climatic zones across China. The association analysis incorporates three temperature parameters and revealed compelling insights in terms of allele frequency. Interestingly, the prevalence of the wild-type allele A was notably higher among northern cattle breeds and this trend diminished gradually as observed in southern cattle populations. Conversely, the mutant-type allele G demonstrated a contrasting trend. Moreover, southern cattle exhibited markedly higher frequencies of GG and GA genotypes (P < 0.01). The presence of heterozygous and homozygous mutations appears to confer an enhanced capacity for adaptation to elevated temperatures. These results provide unequivocal correlation evidence between TRPM2 genotypes (AA, GA, GG) and environmental temperature parameters and comprehend the genetic mechanisms governing temperature adaptation in cattle. This provides valuable insights for strategic breed selection across diverse climatic regions, thereby aiding livestock production amid evolving climate challenges.
Collapse
Affiliation(s)
- Dekai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Yifan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Zhefu Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Yijie Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Yibing Xu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zulfiqar Ahmed
- Department of Livestock and Poultry Production, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Fuqiang Li
- Hunan Tianhua Industrial Corporation Ltd, Lianyuan, China
| | - Xingshan Qi
- Biyang Xianan Cattle Technology and Development Company Ltd, Biyang, China
| | - Weiru Song
- Animal Disease Prevention and Control Center of Yushu Tibetan Autonomous Prefecture, Yushu, China
| | - Kaixia Zhu
- Animal Disease Prevention and Control Center of Yushu Tibetan Autonomous Prefecture, Yushu, China
| | - Jiangcai Gongque
- Animal Disease Prevention and Control Center of Yushu Tibetan Autonomous Prefecture, Yushu, China
| | - Guomei Li
- Forestry and Grassland Comprehensive Service Center of Yushu Prefecture, Qinghai, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A and F University, Yangling, China
| |
Collapse
|
2
|
Dorji J, Reverter A, Alexandre PA, Chamberlain AJ, Vander-Jagt CJ, Kijas J, Porto-Neto LR. Ancestral alleles defined for 70 million cattle variants using a population-based likelihood ratio test. Genet Sel Evol 2024; 56:11. [PMID: 38321371 PMCID: PMC10848479 DOI: 10.1186/s12711-024-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND The study of ancestral alleles provides insights into the evolutionary history, selection, and genetic structures of a population. In cattle, ancestral alleles are widely used in genetic analyses, including the detection of signatures of selection, determination of breed ancestry, and identification of admixture. Having a comprehensive list of ancestral alleles is expected to improve the accuracy of these genetic analyses. However, the list of ancestral alleles in cattle, especially at the whole genome sequence level, is far from complete. In fact, the current largest list of ancestral alleles (~ 42 million) represents less than 28% of the total number of detected variants in cattle. To address this issue and develop a genomic resource for evolutionary studies, we determined ancestral alleles in cattle by comparing prior derived whole-genome sequence variants to an out-species group using a population-based likelihood ratio test. RESULTS Our study determined and makes available the largest list of ancestral alleles in cattle to date (70.1 million) and includes 2.3 million on the X chromosome. There was high concordance (97.6%) of the determined ancestral alleles with those from previous studies when only high-probability ancestral alleles were considered (29.8 million positions) and another 23.5 million high-confidence ancestral alleles were novel, expanding the available reference list to improve the accuracies of genetic analyses involving ancestral alleles. The high concordance of the results with previous studies implies that our approach using genomic sequence variants and a likelihood ratio test to determine ancestral alleles is appropriate. CONCLUSIONS Considering the high concordance of ancestral alleles across studies, the ancestral alleles determined in this study including those not previously listed, particularly those with high-probability estimates, may be used for further genetic analyses with reasonable accuracy. Our approach that used predetermined variants in species and the likelihood ratio test to determine ancestral alleles is applicable to other species for which sequence level genotypes are available.
Collapse
Affiliation(s)
- Jigme Dorji
- CSIRO, Agriculture & Food, St. Lucia, QLD, 4067, Australia.
| | | | | | - Amanda J Chamberlain
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| | - Christy J Vander-Jagt
- AgriBio, Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| | - James Kijas
- CSIRO, Agriculture & Food, St. Lucia, QLD, 4067, Australia
| | | |
Collapse
|
3
|
Chen N, Xia X, Hanif Q, Zhang F, Dang R, Huang B, Lyu Y, Luo X, Zhang H, Yan H, Wang S, Wang F, Chen J, Guan X, Liu Y, Li S, Jin L, Wang P, Sun L, Zhang J, Liu J, Qu K, Cao Y, Sun J, Liao Y, Xiao Z, Cai M, Mu L, Siddiki AZ, Asif M, Mansoor S, Babar ME, Hussain T, Silva GLLP, Gorkhali NA, Terefe E, Belay G, Tijjani A, Zegeye T, Gebre MG, Ma Y, Wang Y, Huang Y, Lan X, Chen H, Migliore NR, Colombo G, Semino O, Achilli A, Sinding MHS, Lenstra JA, Cheng H, Lu W, Hanotte O, Han J, Jiang Y, Lei C. Global genetic diversity, introgression, and evolutionary adaptation of indicine cattle revealed by whole genome sequencing. Nat Commun 2023; 14:7803. [PMID: 38016956 PMCID: PMC10684552 DOI: 10.1038/s41467-023-43626-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Indicine cattle, also referred to as zebu (Bos taurus indicus), play a central role in pastoral communities across a wide range of agro-ecosystems, from extremely hot semiarid regions to hot humid tropical regions. However, their adaptive genetic changes following their dispersal into East Asia from the Indian subcontinent have remained poorly documented. Here, we characterize their global genetic diversity using high-quality whole-genome sequencing data from 354 indicine cattle of 57 breeds/populations, including major indicine phylogeographic groups worldwide. We reveal their probable migration into East Asia was along a coastal route rather than inland routes and we detected introgression from other bovine species. Genomic regions carrying morphology-, immune-, and heat-tolerance-related genes underwent divergent selection according to Asian agro-ecologies. We identify distinct sets of loci that contain promising candidate variants for adaptation to hot semi-arid and hot humid tropical ecosystems. Our results indicate that the rapid and successful adaptation of East Asian indicine cattle to hot humid environments was promoted by localized introgression from banteng and/or gaur. Our findings provide insights into the history and environmental adaptation of indicine cattle.
Collapse
Affiliation(s)
- Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China
| | - Fengwei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Yang Lyu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environment Science, Yunnan University, Kunming, 650500, China
| | - Huixuan Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shikang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jialei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiwen Guan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yangkai Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shuang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liangliang Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Pengfei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Luyang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jicai Zhang
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Jianyong Liu
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000, China
| | - Yanhong Cao
- Guangxi Vocational University of Agriculture, Nanning, 530007, China
| | - Junli Sun
- Guangxi Vocational University of Agriculture, Nanning, 530007, China
| | - Yuying Liao
- Guangxi Veterinary Research Institute, Guangxi Key Laboratory of Veterinary Biotechnology, Nanning, 530001, China
| | - Zhengzhong Xiao
- Guangxi Vocational University of Agriculture, Nanning, 530007, China
| | - Ming Cai
- Yunnan Academy of Grassland and Animal Science, Kunming, 650212, China
| | - Lan Mu
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, 650224, China
| | - Amam Zonaed Siddiki
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, 4225, Bangladesh
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, 38000, Pakistan
| | - Masroor Ellahi Babar
- The University of Agriculture, Dera Ismail Khan, Khyber Pakhtunkhwa, 29050, Pakistan
| | - Tanveer Hussain
- Department of Molecular Biology, Virtual University of Pakistan, Islamabad, 44100, Pakistan
| | | | - Neena Amatya Gorkhali
- National Animal Breeding and Genetics Centre, National Animal Science Research Institute, Nepal Agriculture Research Council, Khumaltar, Lalitpur, 45200, Nepal
| | - Endashaw Terefe
- College of Agriculture and Environmental Science, Department of Animal Science, Arsi University, Asella, Ethiopia
- International Livestock Research Institute (ILRI), P.O. Box 5689, 1000, Addis Ababa, Ethiopia
| | - Gurja Belay
- College of Natural and Computational Sciences, The School of Graduate Studies, Addis Ababa University, 1000, Addis Ababa, Ethiopia
| | - Abdulfatai Tijjani
- International Livestock Research Institute (ILRI), P.O. Box 5689, 1000, Addis Ababa, Ethiopia
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | - Tsadkan Zegeye
- Mekelle Agricultural Research Center, P.O. Box 258, 7000, Mekelle, Tigray, Ethiopia
| | - Mebrate Genet Gebre
- School of Animal and Rangeland Science, College of Agriculture, Haramaya University, 2040, Haramaya, Oromia, Ethiopia
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, 750000, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Giulia Colombo
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, DK-1350, Copenhagen, Denmark
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, 3584 CM, Utrecht, The Netherlands
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan, 250100, China
| | - Wenfa Lu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), P.O. Box 5689, 1000, Addis Ababa, Ethiopia.
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), 100193, Beijing, China.
- Livestock Genetics Program, International Livestock Research Institute (ILRI), 00100, Nairobi, Kenya.
- Yazhouwan National Laboratory, Sanya, 572024, China.
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, 712100, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Xia X, Zhang F, Li S, Luo X, Peng L, Dong Z, Pausch H, Leonard AS, Crysnanto D, Wang S, Tong B, Lenstra JA, Han J, Li F, Xu T, Gu L, Jin L, Dang R, Huang Y, Lan X, Ren G, Wang Y, Gao Y, Ma Z, Cheng H, Ma Y, Chen H, Pang W, Lei C, Chen N. Structural variation and introgression from wild populations in East Asian cattle genomes confer adaptation to local environment. Genome Biol 2023; 24:211. [PMID: 37723525 PMCID: PMC10507960 DOI: 10.1186/s13059-023-03052-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Structural variations (SVs) in individual genomes are major determinants of complex traits, including adaptability to environmental variables. The Mongolian and Hainan cattle breeds in East Asia are of taurine and indicine origins that have evolved to adapt to cold and hot environments, respectively. However, few studies have investigated SVs in East Asian cattle genomes and their roles in environmental adaptation, and little is known about adaptively introgressed SVs in East Asian cattle. RESULTS In this study, we examine the roles of SVs in the climate adaptation of these two cattle lineages by generating highly contiguous chromosome-scale genome assemblies. Comparison of the two assemblies along with 18 Mongolian and Hainan cattle genomes obtained by long-read sequencing data provides a catalog of 123,898 nonredundant SVs. Several SVs detected from long reads are in exons of genes associated with epidermal differentiation, skin barrier, and bovine tuberculosis resistance. Functional investigations show that a 108-bp exonic insertion in SPN may affect the uptake of Mycobacterium tuberculosis by macrophages, which might contribute to the low susceptibility of Hainan cattle to bovine tuberculosis. Genotyping of 373 whole genomes from 39 breeds identifies 2610 SVs that are differentiated along a "north-south" gradient in China and overlap with 862 related genes that are enriched in pathways related to environmental adaptation. We identify 1457 Chinese indicine-stratified SVs that possibly originate from banteng and are frequent in Chinese indicine cattle. CONCLUSIONS Our findings highlight the unique contribution of SVs in East Asian cattle to environmental adaptation and disease resistance.
Collapse
Affiliation(s)
- Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Fengwei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Shuang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Xiaoyu Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Lixin Peng
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, 98 Daling Road, Nanning, China
| | - Zheng Dong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8006, Zurich, Switzerland
| | - Alexander S Leonard
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8006, Zurich, Switzerland
| | - Danang Crysnanto
- Animal Genomics, ETH Zurich, Universitaetstrasse 2, 8006, Zurich, Switzerland
| | - Shikang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Bin Tong
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jianlin Han
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, China
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lihong Gu
- Institute of Animal Science & Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Liangliang Jin
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Gang Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Yuanpeng Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Yangling, China
| | - Zhijie Ma
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Haijian Cheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China.
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, China.
| |
Collapse
|
5
|
Brunson K, Witt KE, Monge S, Williams S, Peede D, Odsuren D, Bukhchuluun D, Cameron A, Szpak P, Amartuvshin C, Honeychurch W, Wright J, Pleuger S, Erdene M, Tumen D, Rogers L, Khatanbaatar D, Batdalai B, Galdan G, Janz L. Ancient Mongolian aurochs genomes reveal sustained introgression and management in East Asia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552443. [PMID: 37609302 PMCID: PMC10441390 DOI: 10.1101/2023.08.10.552443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Societies in East Asia have utilized domesticated cattle for over 5000 years, but the genetic history of cattle in East Asia remains understudied. Genome-wide analyses of 23 ancient Mongolian cattle reveal that East Asian aurochs and ancient East Asian taurine cattle are closely related, but neither are closely related to any modern East Asian breeds. We observe binary variation in aurochs diet throughout the early Neolithic, and genomic evidence shows millennia of sustained male-dominated introgression. We identify a unique connection between ancient Mongolian aurochs and the European Hereford breed. These results point to the likelihood of human management of aurochs in Northeast Asia prior to and during the initial adoption of taurine cattle pastoralism.
Collapse
Affiliation(s)
| | - Kelsey E. Witt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University; Clemson, South Carolina 29634, USA
- Center for Computational Molecular Biology, Brown University; Providence 02912, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University; Providence 02912, USA
| | - Susan Monge
- Department of Anthropology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Sloan Williams
- Department of Anthropology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - David Peede
- Center for Computational Molecular Biology, Brown University; Providence 02912, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University; Providence 02912, USA
- Institute at Brown for Environment and Society, Brown University; Providence 02912, USA
| | - Davaakhuu Odsuren
- Department of History, Mongolian National University of Education; Ulaanbaatar, Sukhbaatar district, 210648, Mongolia
- Institute of Archaeology, Mongolian Academy of Sciences, Ulaanbaatar-51, Mongolia
| | - Dashzeveg Bukhchuluun
- Department of Anthropology, Yale University, 10 Sachem St., New Haven, CT 06511, USA
| | - Asa Cameron
- Department of Anthropology, Yale University, 10 Sachem St., New Haven, CT 06511, USA
| | - Paul Szpak
- Department of Anthropology, Trent University; Peterborough K9J 6Y1, Canada
| | - Chunag Amartuvshin
- Department of Anthropology and Archaeology, National University of Mongolia; Ulaanbaatar-51, Mongolia
| | - William Honeychurch
- Department of Anthropology, Yale University, 10 Sachem St., New Haven, CT 06511, USA
| | - Joshua Wright
- Department of Archaeology, University of Aberdeen, King’s College; Aberdeen, AB24 3FX, UK
| | - Sarah Pleuger
- School of History, Classics and Archaeology, University of Edinburgh; Edinburgh EH8 9AG, UK
| | - Myagmar Erdene
- Department of Anthropology and Archaeology, National University of Mongolia; Ulaanbaatar-51, Mongolia
| | - Dashtseveg Tumen
- Department of Anthropology and Archaeology, National University of Mongolia; Ulaanbaatar-51, Mongolia
| | - Leland Rogers
- Department of Anthropology, University of North Carolina Wilmington; Wilmington, NC 28403, USA
| | - Dorjpurev Khatanbaatar
- School of Business Administration and Humanities, The Mongolian University of Science and Technology; Mongolia
| | - Byambatseren Batdalai
- Archaeological Research Center, National University of Mongolia; Ulaanbaatar-51, Mongolia
| | - Ganbaatar Galdan
- Institute of Archaeology, Mongolian Academy of Sciences, Ulaanbaatar-51, Mongolia
| | - Lisa Janz
- Department of Anthropology, University of Toronto Scarborough; Scarborough, ON M1C 1A4, Canada
| |
Collapse
|
6
|
Dai X, Bian P, Hu D, Luo F, Huang Y, Jiao S, Wang X, Gong M, Li R, Cai Y, Wen J, Yang Q, Deng W, Nanaei HA, Wang Y, Wang F, Zhang Z, Rosen BD, Heller R, Jiang Y. A Chinese indicine pangenome reveals a wealth of novel structural variants introgressed from other Bos species. Genome Res 2023; 33:1284-1298. [PMID: 37714713 PMCID: PMC10547261 DOI: 10.1101/gr.277481.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/30/2023] [Indexed: 09/17/2023]
Abstract
Chinese indicine cattle harbor a much higher genetic diversity compared with other domestic cattle, but their genome architecture remains uninvestigated. Using PacBio HiFi sequencing data from 10 Chinese indicine cattle across southern China, we assembled 20 high-quality partially phased genomes and integrated them into a multiassembly graph containing 148.5 Mb (5.6%) of novel sequence. We identified 156,009 high-confidence nonredundant structural variants (SVs) and 206 SV hotspots spanning ∼195 Mb of gene-rich sequence. We detected 34,249 archaic introgressed fragments in Chinese indicine cattle covering 1.93 Gb (73.3%) of the genome. We inferred an average of 3.8%, 3.2%, 1.4%, and 0.5% of introgressed sequence originating, respectively, from banteng-like, kouprey-like, gayal-like, and gaur-like Bos species, as well as 0.6% of unknown origin. Introgression from multiple donors might have contributed to the genetic diversity of Chinese indicine cattle. Altogether, this study highlights the contribution of interspecies introgression to the genomic architecture of an important livestock population and shows how exotic genomic elements can contribute to the genetic variation available for selection.
Collapse
Affiliation(s)
- Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peipei Bian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dexiang Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Funong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shaohua Jiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mian Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yudong Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiayue Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qimeng Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Hojjat Asadollahpour Nanaei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran 1983969412, Iran
| | - Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA
| | - Rasmus Heller
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China;
- Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
7
|
Xia X, Qu K, Wang Y, Sinding MHS, Wang F, Hanif Q, Ahmed Z, Lenstra JA, Han J, Lei C, Chen N. Global dispersal and adaptive evolution of domestic cattle: a genomic perspective. STRESS BIOLOGY 2023; 3:8. [PMID: 37676580 PMCID: PMC10441868 DOI: 10.1007/s44154-023-00085-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/26/2023] [Indexed: 09/08/2023]
Abstract
Domestic cattle have spread across the globe and inhabit variable and unpredictable environments. They have been exposed to a plethora of selective pressures and have adapted to a variety of local ecological and management conditions, including UV exposure, diseases, and stall-feeding systems. These selective pressures have resulted in unique and important phenotypic and genetic differences among modern cattle breeds/populations. Ongoing efforts to sequence the genomes of local and commercial cattle breeds/populations, along with the growing availability of ancient bovid DNA data, have significantly advanced our understanding of the genomic architecture, recent evolution of complex traits, common diseases, and local adaptation in cattle. Here, we review the origin and spread of domestic cattle and illustrate the environmental adaptations of local cattle breeds/populations.
Collapse
Affiliation(s)
- Xiaoting Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kaixing Qu
- Academy of Science and Technology, Chuxiong Normal University, Chuxiong, 675000, China
| | - Yan Wang
- Qingdao Municipal Bureau of Agriculture and Rural Affairs, Qingdao, 266000, China
| | - Mikkel-Holger S Sinding
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, 1350, Denmark
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Quratulain Hanif
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Azad Jammu and Kashmir, 12350, Pakistan
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jianlin Han
- Livestock Genetic Program, International Livestock Research Institute (ILRI), Nairobi, 00100, Kenya
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Ningbo Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
8
|
Genomic evidence refutes the hypothesis that the Bornean banteng is a distinct species. BMC Ecol Evol 2022; 22:110. [PMID: 36127636 PMCID: PMC9487127 DOI: 10.1186/s12862-022-02062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The banteng (Bos javanicus) is an endangered species within the wild Asian Bos complex, that has traditionally been subdivided into three geographically isolated subspecies based on (i) mainland Southeast Asia (B. j. birmanicus), (ii) Java (B. j. javanicus), and (iii) Borneo (B. j. lowi). However, analysis of a single Bornean banteng mitochondrial genome generated through a genome skimming approach was used to suggest that it may actually represent a distinct species (Ishige et al. in Mitochondrial DNA A DNA Mapp Seq Anal 27(4):2453–4. http://doi.org/10.3109/19401736.2015.1033694 , 2016). To explore this hypothesis further, we leveraged on the GenBank (NCBI) raw read sequencing data originally used to construct the mitochondrial genome and reconstructed its nuclear genome at low (0.2×) coverage. When analysed in the context of nuclear genomic data representing a broad reference panel of Asian Bos species, we find the Bornean banteng affiliates strongly with the Javan banteng, in contradiction to the expectation if the separate species hypothesis was correct. Thus, despite the Bornean banteng’s unusual mitochondrial lineage, we argue there is no genomic evidence that the Bornean banteng is a distinct species.
Collapse
|