1
|
Vescovo E, Cardellicchio P, Tomassini A, Fadiga L, D'Ausilio A. Excitatory/inhibitory motor balance reflects individual differences during joint action coordination. Eur J Neurosci 2024; 59:3403-3421. [PMID: 38666628 DOI: 10.1111/ejn.16365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/06/2024] [Indexed: 06/15/2024]
Abstract
Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA). Prior knowledge was manipulated in each trial such that the participant knew (K) or not (No_K) the target bottle in advance. Online transcranial magnetic stimulation (TMS) was administered at action-relevant landmarks to explore corticospinal excitability (CSE) and inhibition (cortical silent period [cSP]). CSE was modulated early on before the action started if prior information was available. In contrast, cSP modulation emerged later during the reaching action, regardless of prior information. These two indexes could thus reflect the concurrent elaboration of contextual priors (top-down) and the online sampling of partner's kinematic cues (bottom-up). Furthermore, participants selected either one of two possible behavioural strategies, preferring early or late force exertion on the bottle. One translates into a reduced risk of motor coordination failure and the other into reduced metabolic expenditure. Each strategy was characterised by a specific excitatory/inhibitory profile. In conclusion, the study of excitatory/inhibitory balance paves the way for the neurophysiological determination of individual differences in the combination of top-down and bottom-up processing during JA coordination.
Collapse
Affiliation(s)
- Enrico Vescovo
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Casarotto A, Dolfini E, Cardellicchio P. Stop affordance task: a measure of the motor interference effect. Cogn Process 2024; 25:259-266. [PMID: 38060055 DOI: 10.1007/s10339-023-01172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
The term affordance refers to the property or quality of an object that indicates the ways in which it could potentially be used. Affordances elicit automatic motor representations that sometimes differ from the current action representation, resulting in behavioural interference effects. This affordance-induces interference could result in automatic and involuntary behavioural inhibition, probably according to the same mechanism that controls the voluntary motor inhibition. Nevertheless, few studies have considered how voluntary response inhibition is modulated by affordance. In this study, we assess the effect of affordance on voluntary action inhibition using a stop-signal task with an affordance object as a Stop Signal. An image of a mug, with the handle orientated in the same or in the opposite direction of the hand recruited to respond at the target, was used as Stop Signal. Our results showed a reduction of the time necessary to withhold the response when the handle of the mug was pointed toward the hand pre-activated to respond. This effect indicates an increased inhibition due to the mismatch between the motor representation elicited by the affordance and the motor representation pre-activated by the target. This suggests a specific interference effect, reflected in an enhanced ability to inhibit an ongoing action.
Collapse
Affiliation(s)
- Andrea Casarotto
- IT@UniFe Center for Translational Neurophysiology, Istituto Italiano Di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università Di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Elisa Dolfini
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università Di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Pasquale Cardellicchio
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università Di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy.
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
3
|
Dolfini E, Cardellicchio P, Fadiga L, D'Ausilio A. The role of dorsal premotor cortex in joint action inhibition. Sci Rep 2024; 14:4675. [PMID: 38409309 PMCID: PMC10897189 DOI: 10.1038/s41598-024-54448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Behavioral interpersonal coordination requires smooth negotiation of actions in time and space (joint action-JA). Inhibitory control may play a role in fine-tuning appropriate coordinative responses. To date, little research has been conducted on motor inhibition during JA and on the modulatory influence that premotor areas might exert on inhibitory control. Here, we used an interactive task in which subjects were required to reach and open a bottle using one hand. The bottle was held and stabilized by a co-actor (JA) or by a mechanical holder (vice clamp, no-JA). We recorded two TMS-based indices of inhibition (short-interval intracortical inhibition-sICI; cortical silent period-cSP) during the reaching phase of the task. These reflect fast intracortical (GABAa-mediated) and slow corticospinal (GABAb-mediated) inhibition. Offline continuous theta burst stimulation (cTBS) was used to interfere with dorsal premotor cortex (PMd), ventral premotor cortex (PMv), and control site (vertex) before the execution of the task. Our results confirm a dissociation between fast and slow inhibition during JA coordination and provide evidence that premotor areas drive only slow inhibitory mechanisms, which in turn may reflect behavioral co-adaptation between trials. Exploratory analyses further suggest that PMd, more than PMv, is the key source of modulatory drive sculpting movements, according to the socio-interactive context.
Collapse
Affiliation(s)
- Elisa Dolfini
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy.
| | - Pasquale Cardellicchio
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
- Department of Neurosciences and Rehabilitation Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121, Ferrara, Italy
| |
Collapse
|
4
|
He Q, Geißler CF, Ferrante M, Hartwigsen G, Friehs MA. Effects of transcranial magnetic stimulation on reactive response inhibition. Neurosci Biobehav Rev 2024; 157:105532. [PMID: 38194868 DOI: 10.1016/j.neubiorev.2023.105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Reactive response inhibition cancels impending actions to enable adaptive behavior in ever-changing environments and has wide neuropsychiatric implications. A canonical paradigm to measure the covert inhibition latency is the stop-signal task (SST). To probe the cortico-subcortical network underlying motor inhibition, transcranial magnetic stimulation (TMS) has been applied over central nodes to modulate SST performance, especially to the right inferior frontal cortex and the presupplementary motor area. Since the vast parameter spaces of SST and TMS enabled diverse implementations, the insights delivered by emerging TMS-SST studies remain inconclusive. Therefore, a systematic review was conducted to account for variability and synthesize converging evidence. Results indicate certain protocol specificity through the consistent perturbations induced by online TMS, whereas offline protocols show paradoxical effects on different target regions besides numerous null effects. Ancillary neuroimaging findings have verified and dissociated the underpinning network dynamics. Sources of heterogeneity in designs and risk of bias are highlighted. Finally, we outline best-practice recommendations to bridge methodological gaps and subserve the validity as well as replicability of future work.
Collapse
Affiliation(s)
- Qu He
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany
| | - Christoph F Geißler
- Institute for Cognitive & Affective Neuroscience (ICAN), Trier University, Trier, Germany
| | - Matteo Ferrante
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Gesa Hartwigsen
- Wilhelm Wundt Institute for Psychology, Leipzig University, Leipzig, Germany; Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maximilian A Friehs
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Psychology of Conflict Risk and Safety, University of Twente, the Netherlands; University College Dublin, School of Psychology, Dublin, Ireland.
| |
Collapse
|