1
|
Udaypal, Goswami RK, Mehariya S, Verma P. Advances in microalgae-based carbon sequestration: Current status and future perspectives. ENVIRONMENTAL RESEARCH 2024; 249:118397. [PMID: 38309563 DOI: 10.1016/j.envres.2024.118397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The advancement in carbon dioxide (CO2) sequestration technology has received significant attention due to the adverse effects of CO2 on climate. The mitigation of the adverse effects of CO2 can be accomplished through its conversion into useful products or renewable fuels. In this regard, microalgae is a promising candidate due to its high photosynthesis efficiency, sustainability, and eco-friendly nature. Microalgae utilizes CO2 in the process of photosynthesis and generates biomass that can be utilized to produce various valuable products such as supplements, chemicals, cosmetics, biofuels, and other value-added products. However, at present microalgae cultivation is still restricted to producing value-added products due to high cultivation costs and lower CO2 sequestration efficiency of algal strains. Therefore, it is very crucial to develop novel techniques that can be cost-effective and enhance microalgal carbon sequestration efficiency. The main aim of the present manuscript is to explain how to optimize microalgal CO2 sequestration, integrate valuable product generation, and explore novel techniques like genetic manipulations, phytohormones, quantum dots, and AI tools to enhance the efficiency of CO2 sequestration. Additionally, this review provides an overview of the mass flow of different microalgae and their biorefinery, life cycle assessment (LCA) for achieving net-zero CO2 emissions, and the advantages, challenges, and future perspectives of current technologies. All of the reviewed approaches efficiently enhance microalgal CO2 sequestration and integrate value-added compound production, creating a green and economically profitable process.
Collapse
Affiliation(s)
- Udaypal
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
2
|
Mutale-Joan C, El Arroussi H. Biotechnological strategies overcoming limitations to H. pluvialis-derived astaxanthin production and Morocco's potential. Crit Rev Food Sci Nutr 2023:1-16. [PMID: 38145395 DOI: 10.1080/10408398.2023.2294163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Haematococcus pluvialis is the richest source of natural astaxanthin, but the production of H. pluvialis-derived astaxanthin is usually limited by its slow cell proliferation and astaxanthin accumulation. Efforts to enhance biomass productivity, astaxanthin accumulation, and extraction are ongoing. This review highlights different approaches that have previously been studied in microalgal species for enhanced biomass productivity, as well as optimized methods for astaxanthin accumulation and extraction, and how these methods could be combined to bypass the challenges limiting natural astaxanthin production, particularly in H. pluvialis, at all stages (biomass production, and astaxanthin accumulation and extraction). Biotechnological approaches, such as overexpressing low CO2 inducible genes, utilizing complementary carbon sources, CRISPR-Cas9 bioengineering, and the use of active compounds, for biomass productivity are outlined. Direct astaxanthin extraction from H. pluvialis zoospores and Morocco's potential for microalgal-based astaxanthin production are equally discussed. This review emphasizes the need to engineer an optimized H. pluvialis-derived astaxanthin production system combining two or more of these strategies for increased growth, and astaxanthin productivity, to compete in the larger, lower-priced market in aquaculture and nutraceutical sectors.
Collapse
Affiliation(s)
- Chanda Mutale-Joan
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
| | - Hicham El Arroussi
- Algal Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MASCIR), Rabat, Morocco
- AgroBioSciences (AgBS) program, Mohammed VI Polytechnic University, Benguerir, Morocco
| |
Collapse
|
3
|
Byeon H, An Y, Kim T, Rayamajhi V, Lee J, Shin H, Jung S. Effects of Four Organic Carbon Sources on the Growth and Astaxanthin Accumulation of Haematococcus lacustris. Life (Basel) 2023; 14:29. [PMID: 38255645 PMCID: PMC10820012 DOI: 10.3390/life14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The microalga Haematococcus lacustris has a complex life cycle and a slow growth rate, hampering its mass cultivation. Culture of microalgae with organic carbon sources can increase the growth rate. Few studies have evaluated the effects of organic carbon sources on H. lacustris. We compared the vegetative and inductive stages of H. lacustris under autotrophic and mixotrophic conditions using four organic carbon sources: sodium acetate, glycerol, sodium gluconate, and ribose, each at various concentrations (0.325, 0.65, 1.3, and 2.6 g/L). The cell density was increased by 1.3 g/L of glycerol in the vegetative stage. The rapid transition to the inductive stage under nitrogen-depletion conditions caused by 1.3 or 2.6 g/L sodium acetate promoted the accumulation of astaxanthin. The production of astaxanthin by H. lacustris in mass culture using organic carbon sources could increase profitability.
Collapse
Affiliation(s)
- Huijeong Byeon
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Yunji An
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Taesoo Kim
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Vijay Rayamajhi
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Jihyun Lee
- Korea Fisheries Resources Agency East Sea Branch, Samho-ro, Buk-gu, Pohang 37601, Gyungsangbuk-do, Republic of Korea
| | - HyunWoung Shin
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
- AlgaeBio, Inc., Asan 31459, Chungcheongnam-do, Republic of Korea
| | - SangMok Jung
- Research Institute for Basic Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
4
|
Tavares J, Silva TP, Paixão SM, Alves L. Development of a bench-scale photobioreactor with a novel recirculation system for continuous cultivation of microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117418. [PMID: 36753845 DOI: 10.1016/j.jenvman.2023.117418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Microalgae cultivation can be used to increase the sustainability of carbon emitting processes, converting the CO2 from exhaust gases into fuels, food and chemicals. Many of the carbon emitting industries operate in a continuous manner, for periods that can span days or months, resulting in a continuous stream of gas emissions. Biogenic CO2 from industrial microbiological processes is one example, since in many cases it becomes unsustainable to stop these processes on a daily or weekly basis. To correctly sequester these emissions, microalgae systems must be operated under continuous constant conditions, requiring photobioreactors (PBRs) that can act as chemostats for long periods of time. However, in order to optimize culture parameters or study metabolic responses, bench-scale setups are necessary. Currently there is a lack of studies and design alternatives using chemostat, since most works focus on batch assays or semi-continuous cultures. Therefore, this work focused on the development of a continuous bench-scale PBR, which combines a retention vessel, a photocollector and a degasser, with an innovative recirculation system, that allows it to operate as an autotrophic chemostat, to study carbon sequestration from a biogenic CO2-rich constant air stream. To assess its applicability, the PBR was used to cultivate the green microalga Haematococcus pluvialis using as sole carbon source the CO2 produced by a coupled heterotrophic bacterial chemostat. An air stream containing ≈0.35 vol% of CO2, was fed to the system, and it was evaluated in terms of stability, carbon fixation and biomass productivity, for dilution rates ranging from 0.1 to 0.5 d-1. The PBR was able to operate under chemostat conditions for more than 100 days, producing a stable culture that generated proportional responses to the stimuli it was subjected to, attaining a maximum biomass productivity of 183 mg/L/d with a carbon fixation efficiency of ≈39% at 0.3 d-1. These results reinforce the effectiveness of the developed PBR system, making it suitable for laboratory-scale studies of continuous photoautotrophic microalgae cultivation.
Collapse
Affiliation(s)
- João Tavares
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Tiago P Silva
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal
| | - Susana M Paixão
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| | - Luís Alves
- LNEG - Laboratório Nacional de Energia e Geologia, IP, Unidade de Bioenergia e Biorrefinarias, Estrada do Paço do Lumiar, 22, 1649-038, Lisboa, Portugal.
| |
Collapse
|
5
|
Wu K, Tang S, Wu X, Zhu J, Song J, Zhong Y, Zhou J, Cai Z. Colony formation of Phaeocystis globosa: A case study of evolutionary strategy for competitive adaptation. MARINE POLLUTION BULLETIN 2023; 186:114453. [PMID: 36495614 DOI: 10.1016/j.marpolbul.2022.114453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Some algae possess a multi-morphic life cycle, either in the form of free-living solitary cells or colonies which constantly occur in algal blooms. Though colony formation seems to consume extra energy and materials, many algae tend to outbreak in form of colonies. Here, we hypothesized that colony formation is a selected evolutionary strategy to improve population competitiveness and environmental adaptation. To test the hypothesis, different sizes of colonies and solitary cells in a natural bloom of Phaeocystis globosa were investigated. The large colony showed a relatively low oxidant stress level, a nutrient trap effect, and high nutrient use efficiency. The colonial nitrogen and phosphorus concentrations were about 5-10 times higher than solitary cell phycosphere and cellular nutrient allocation decreased with the enlargement of the colonial diameter following the economies of scale law. These features provide the colony with monopolistic competence and could function as an evolutionary strategy for competitive adaptation.
Collapse
Affiliation(s)
- Kebi Wu
- School of Life Sciences, Tsinghua University, Beijing 100086, China; Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaotian Wu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China
| | - Junting Song
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yanlin Zhong
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
6
|
Zhu J, Tang S, Cheng K, Cai Z, Chen G, Zhou J. Microbial community composition and metabolic potential during a succession of algal blooms from Skeletonema sp. to Phaeocystis sp. Front Microbiol 2023; 14:1147187. [PMID: 37138603 PMCID: PMC10149697 DOI: 10.3389/fmicb.2023.1147187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Elucidating the interactions between algal and microbial communities is essential for understanding the dynamic mechanisms regulating algal blooms in the marine environment. Shifts in bacterial communities when a single species dominates algal blooms have been extensively investigated. However, bacterioplankton community dynamics during bloom succession when one algal species shift to another is still poorly understood. In this study, we used metagenomic analysis to investigate the bacterial community composition and function during algal bloom succession from Skeletonema sp. to Phaeocystis sp. The results revealed that bacterial community structure and function shifted with bloom succession. The dominant group in the Skeletonema bloom was Alphaproteobacteria, while Bacteroidia and Gammaproteobacteria dominated the Phaeocystis bloom. The most noticeable feature during the successions was the change from Rhodobacteraceae to Flavobacteriaceae in the bacterial communities. The Shannon diversity indices were significantly higher in the transitional phase of the two blooms. Metabolic reconstruction of the metagenome-assembled genomes (MAGs) showed that dominant bacteria exhibited some environmental adaptability in both blooms, capable of metabolizing the main organic compounds, and possibly providing inorganic sulfur to the host algae. Moreover, we identified specific metabolic capabilities of cofactor biosynthesis (e.g., B vitamins) in MAGs in the two algal blooms. In the Skeletonema bloom, Rhodobacteraceae family members might participate in synthesizing vitamin B1 and B12 to the host, whereas in the Phaeocystis bloom, Flavobacteriaceae was the potential contributor for synthesizing vitamin B7 to the host. In addition, signal communication (quorum sensing and indole-3-acetic acid molecules) might have also participated in the bacterial response to bloom succession. Bloom-associated microorganisms showed a noticeable response in composition and function to algal succession. The changes in bacterial community structure and function might be an internal driving factor for the bloom succession.
Collapse
Affiliation(s)
- Jianming Zhu
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, China
| | - Si Tang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong, China
- *Correspondence: Guofu Chen,
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
- Jin Zhou,
| |
Collapse
|
7
|
Zhu J, Chen G, Zhou J, Zeng Y, Cheng K, Cai Z. Dynamic patterns of quorum sensing signals in phycospheric microbes during a marine algal bloom. ENVIRONMENTAL RESEARCH 2022; 212:113443. [PMID: 35550809 DOI: 10.1016/j.envres.2022.113443] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
In the marine environment, the interactions among various species based on chemical signals play critical roles in influencing microbial structure and function. Quorum sensing (QS), the well-known signal-dependent communication autoinducer, is an important regulator in complex microbial communities. Here, we explored the QS gene profiles of phycosphere bacteria during a microcosmic phytoplankton bloom using metagenomic sequence data. More than fifteen subtypes of QS systems and 211,980 non-redundant amino acid sequences were collected and classified for constructing a hierarchical quorum-sensing database. The abundance of the various QS subtypes varied at different bloom stages and showed a strong correlation with phycosphere microorganisms. This suggested that QS is involved in regulating the phycosphere microbial succession during an algal bloom. A neutral community model revealed that the QS functional gene community assemblies were driven by stochastic processes. Co-occurrence model analysis showed that the QS gene networks of phycospheric microbes had similar topological structure and functional composition, which is a potential cornerstone for maintaining signal communication and population stabilization among microorganisms. Overall, QS systems have a strong relationship with the development of algal blooms and participate in regulating algal-associated microbial communities as chemical signals. This research reveals the chemical and ecological behavior of algal symbiotic bacteria and expands the current understanding of microbial dynamics in marine algal blooms.
Collapse
Affiliation(s)
- Jianming Zhu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, Shandong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| | - Yanhua Zeng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| |
Collapse
|