1
|
Qi SS, Sun XP, Sun YB, Zhai JJ, Wang YF, Lou SJ, Xu DQ. Enantioselective Synthesis of Nonfused Eight-Membered O-Heterocycles by Sequential Catalysis. Org Lett 2025; 27:340-345. [PMID: 39791240 DOI: 10.1021/acs.orglett.4c04253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
This work describes a chiral bifunctional squaramide/DBU sequential catalytic strategy for the enantioselective synthesis of nonfused chiral eight-membered O-heterocycles through the asymmetric addition of ynones to β,γ-unsaturated α-ketoesters followed by the regio- and diastereoselective cyclization of the adduct intermediates. Mechanistic experiments revealed that an isomerization process should be involved in the ring formation step, and the origin of the high regioselectivity and diastereoselectivity has also been elucidated by the DFT calculations.
Collapse
Affiliation(s)
- Suo-Suo Qi
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiao-Ping Sun
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yan-Biao Sun
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jing-Jing Zhai
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi-Feng Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
2
|
Xu SS, Li ZY, Liu MY, Sha F, Wu XY. Asymmetric Vinylogous Michael/Oxa-Michael Tandem Reaction between β,γ-Unsaturated Amides and Isatin-Derived β,γ-Unsaturated α-Ketoesters. J Org Chem 2024; 89:17425-17436. [PMID: 39545709 DOI: 10.1021/acs.joc.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
An organocatalytic asymmetric vinylogous Michael/oxa-Michael tandem reaction between β,γ-unsaturated pyrazoleamides and isatin-derived β,γ-unsaturated ketoesters has been developed with excellent regio-, diastereo-, and enantioselectivities. The methodology provides an effective approach to construct enantiomerically pure 3,4'-pyranyl spirooxindole derivatives containing three contiguous chiral centers. Moreover, the transformations of the chiral products, including the removal and reduction of the pyrazole group, have been investigated.
Collapse
Affiliation(s)
- Shan-Shan Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zi-Yu Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Meng-Yu Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Feng Sha
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xin-Yan Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Hennessy MC, Gandhi H, O'Sullivan TP. Organocatalytic Asymmetric Peroxidation of γ,δ-Unsaturated β-Keto Esters-A Novel Route to Chiral Cycloperoxides. Molecules 2023; 28:molecules28114317. [PMID: 37298799 DOI: 10.3390/molecules28114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
A methodology for the asymmetric peroxidation of γ,δ-unsaturated β-keto esters is presented. Using a cinchona-derived organocatalyst, the target δ-peroxy-β-keto esters were obtained in high enantiomeric ratios of up to 95:5. Additionally, these δ-peroxy esters can be readily reduced to chiral δ-hydroxy-β-keto esters without impacting the β-keto ester functionality. Importantly, this chemistry opens up a concise route to chiral 1,2-dioxolanes, a common motif in many bioactive natural products, via a novel P2O5-mediated cyclisation of the corresponding δ-peroxy-β-hydroxy esters.
Collapse
Affiliation(s)
- Mary C Hennessy
- School of Chemistry, University College Cork, T12 YN60 Cork, Ireland
- Analytical and Biological Chemistry Research Facility, University College Cork, T12 YN60 Cork, Ireland
| | - Hirenkumar Gandhi
- School of Chemistry, University College Cork, T12 YN60 Cork, Ireland
- Analytical and Biological Chemistry Research Facility, University College Cork, T12 YN60 Cork, Ireland
| | - Timothy P O'Sullivan
- School of Chemistry, University College Cork, T12 YN60 Cork, Ireland
- Analytical and Biological Chemistry Research Facility, University College Cork, T12 YN60 Cork, Ireland
- School of Pharmacy, University College Cork, T12 YN60 Cork, Ireland
| |
Collapse
|
4
|
Yang FY, Han TJ, Jia SK, Wang MC, Mei GJ. Catalytic [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes: non-carbenoid Doyle-Kirmse reaction. Chem Commun (Camb) 2023; 59:3107-3110. [PMID: 36808428 DOI: 10.1039/d3cc00160a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The Sc(III)-catalyzed [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes has been established. Owing to the absence of a carbenoid intermediate, this protocol represents the first non-carbenoid variant of the Doyle-Kirmse reaction. Under mild conditions, a variety of tertiary thioethers have been readily prepared in good to excellent yields.
Collapse
Affiliation(s)
- Fu-Yuan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Tian-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
Yu S, Cai Q, Wang C, Hou J, Liang J, Jiao Z, Yao C, Li YM. Enantioselective Friedel-Crafts Alkylation of Indoles with β,γ-Unsaturated α-Ketoesters Catalyzed by New Copper(I) Catalysts. J Org Chem 2023. [PMID: 36791262 DOI: 10.1021/acs.joc.2c02749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
New Cu(I) catalysts are effective in enantioselective Friedel-Crafts alkylation of a variety of indoles with different β,γ-unsaturated α-ketoesters. A control study shows that such a catalyst system is less sensitive to air, and the reactions can be carried out without special cares such as glovebox operation or moisture/oxygen-free conditions. Preliminary computation results suggest that there exists π-π stacking between the substrate and the catalyst, and such an interaction seems to play a role in stabilizing the reaction intermediate and enhancing the stereoselectivity of the reactions. The desired products can be obtained in up to 98% yield at 99% enantiomeric excess. The same high enantioselectivity can be observed when the reaction is carried in a gram scale, indicating a good scalability of the catalyst system in enantioselective Friedel-Crafts alkylation of different indoles with β,γ-unsaturated α-ketoesters.
Collapse
Affiliation(s)
- Shibo Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Qihang Cai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Chao Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jiaqi Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jiemian Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Zilin Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Chao Yao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yue-Ming Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Yang S, Wang HQ, Gao JN, Tan WX, Zhang YC, Shi F. Lewis Acid‐Catalyzed (3+2) Cycloaddition of 2‐Indolylmethanols with β,γ‐Unsaturated α‐Ketoesters. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang Yang
- Jiangsu Normal University department of chemistry CHINA
| | - Hai-Qing Wang
- Jiangsu Normal University department of chemistry CHINA
| | - Jun-Nan Gao
- Jiangsu Normal University department of chemistry CHINA
| | - Wen-Xin Tan
- Jiangsu Normal University department of chemistry CHINA
| | - Yu-Chen Zhang
- Jiangsu Normal University department of chemistry CHINA
| | - Feng Shi
- Jiangsu Normal University School of Chemistry and Chemical Engineering Tongshan New District, Shanghai Road 101 221116 Xuzhou CHINA
| |
Collapse
|
7
|
Ray S, Singh S, Kumar G, Shukla G, SINGH MAYA. Reagent‐Controlled Chemodivergent Approach to Thiazolines and Thiazines from α‐N‐Hydroxyimino Dithioesters. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Ganesh Kumar
- Banaras Hindu University Faculty of Science INDIA
| | | | | |
Collapse
|
8
|
Gan Z, Cui D, Zhang H, Feng Y, Huang L, Gui Y, Gao L, Song Z. Trityl Cation-Catalyzed Hosomi-Sakurai Reaction of Allylsilane with β,γ-Unsaturated α-Ketoester to Form γ,γ-Disubstituted α-Ketoesters. Molecules 2022; 27:molecules27154730. [PMID: 35897907 PMCID: PMC9331905 DOI: 10.3390/molecules27154730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022] Open
Abstract
(Ph3C)[BPh(F)4]-catalyzed Hosomi-Sakurai allylation of allylsilanes with β,γ-unsaturated α-ketoesters has been developed to give γ,γ-disubstituted α-ketoesters in high yields with excellent chemoselectivity. Preliminary mechanistic studies suggest that trityl cation dominates the catalysis, while the silyl cation plays a minor role.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lu Gao
- Correspondence: (L.G.); (Z.S.)
| | | |
Collapse
|
9
|
Miao YH, Hua YZ, Gao HJ, Mo NN, Wang MC, Mei GJ. Catalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles. Chem Commun (Camb) 2022; 58:7515-7518. [PMID: 35687078 DOI: 10.1039/d2cc02458f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A facile chiral phosphoric-acid catalyzed asymmetric inverse-electron-demand aza-Diels-Alder reaction of 1,3-diazadienes with 3-vinylindoles was established. By using this mild and practical protocol, a broad range of benzothiazolopyrimidines with three contiguous stereogenic centers were prepared in good yields and excellent diastereo- and enantio-selectivities (43 examples, up to 83% yield, >99% ee and all >20 : 1 dr). A plausible concerted reaction pathway enabled by the dual hydrogen-bonding effect was proposed to account for the observed excellent enantioselectivity and specific trans-trans diastereoselectivity.
Collapse
Affiliation(s)
- Yu-Hang Miao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hao-Jie Gao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Nan-Nan Mo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|