1
|
Schwerk C, Schroten H. In vitro models of the choroid plexus and the blood-cerebrospinal fluid barrier: advances, applications, and perspectives. Hum Cell 2024; 37:1235-1242. [PMID: 39103559 PMCID: PMC11341628 DOI: 10.1007/s13577-024-01115-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
The choroid plexus (CP), a highly vascularized endothelial-epithelial convolute, is placed in the ventricular system of the brain and produces a large part of the cerebrospinal fluid (CSF). Additionally, the CP is the location of a blood-CSF barrier (BCSFB) that separates the CSF from the blood stream in the CP endothelium. In vitro models of the CP and the BCSFB are of high importance to investigate the biological functions of the CP and the BCSFB. Since the CP is involved in several serious diseases, these in vitro models promise help in researching the processes contributing to the diseases and during the development of treatment options. In this review, we provide an overview on the available models and the advances that have been made toward more sophisticated and "in vivo near" systems as organoids and microfluidic lab-on-a-chip approaches. We go into the applications and research objectives for which the various modeling systems can be used and discuss the possible future prospects and perspectives.
Collapse
Affiliation(s)
- Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| |
Collapse
|
2
|
Yeh YT, Del Álamo JC, Caffrey CR. Biomechanics of parasite migration within hosts. Trends Parasitol 2024; 40:164-175. [PMID: 38172015 DOI: 10.1016/j.pt.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
The dissemination of protozoan and metazoan parasites through host tissues is hindered by cellular barriers, dense extracellular matrices, and fluid forces in the bloodstream. To overcome these diverse biophysical impediments, parasites implement versatile migratory strategies. Parasite-exerted mechanical forces and upregulation of the host's cellular contractile machinery are the motors for these strategies, and these are comparably better characterized for protozoa than for helminths. Using the examples of the protozoans, Toxoplasma gondii and Plasmodium, and the metazoan, Schistosoma mansoni, we highlight how quantitative tools such as traction force and reflection interference contrast microscopies have improved our understanding of how parasites alter host mechanobiology to promote their migration.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA.
| | - Juan C Del Álamo
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 93093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC0657, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Oula JO, Mose JM, Waiganjo NN, Chepukosi KW, Mitalo NS, Isaac AO, Nyariki JN. Vitamin B12 blocked Trypanosoma brucei rhodesiense-driven disruption of the blood brain barrier, and normalized nitric oxide and malondialdehyde levels in a mouse model. Parasitol Int 2023; 96:102775. [PMID: 37390918 DOI: 10.1016/j.parint.2023.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Infection with Trypanosoma brucei rhodesiense (T.b.r) causes acute Human African Trypanosomiasis (HAT) in Africa. This study determined the effect of vitamin B12 on T.b.r -driven pathological events in a mouse model. Mice were randomly assigned into four groups; group one was the control. Group two was infected with T.b.r; group three was supplemented with 8 mg/kg vitamin B12 for two weeks; before infection with T.b.r. For group four, administration of vitamin B12 was started from the 4th days post-infection with T.b.r. At 40 days post-infection, the mice were sacrificed to obtain blood, tissues, and organs for various analyses. The results showed that vitamin B12 administration enhanced the survival rate of T.b.r infected mice, and prevented T.b.r-induced disruption of the blood-brain barrier and decline in neurological performance. Notably, T.b.r-induced hematological alteration leading to anaemia, leukocytosis and dyslipidemia was alleviated by vitamin B12. T.b.r-induced elevation of the liver alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin as well as the kidney damage markers urea, uric acid and creatinine were attenuated by vitamin B12. Vitamin B12 blocked T.b.r-driven rise in TNF-α and IFN-γ, nitric oxide and malondialdehyde. T.b.r-induced depletion of GSH levels were attenuated in the presence of vitamin B12 in the brain, spleen and liver tissues; a clear indication of the antioxidant activity of vitamin B12. In conclusion, treatment with vitamin B12 potentially protects against various pathological events associated with severe late-stage HAT and presents a great opportunity for further scrutiny to develop an adjunct therapy for severe late-stage HAT.
Collapse
Affiliation(s)
- James O Oula
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - John Mokua Mose
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Naomi N Waiganjo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Kennedy W Chepukosi
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Nancy S Mitalo
- Department of Biomedical Science & Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, P. O. Box 52428, 00200 Nairobi, Kenya.
| |
Collapse
|
4
|
Herrmann A, Schnedermann CS, Ishikawa H, Schwerk C, Schroten H, Mogk S. Protocol to analyze the transmigration efficiency of T. brucei using an in vitro model of the blood-cerebrospinal fluid barrier. STAR Protoc 2022; 3:101676. [PMID: 36103307 PMCID: PMC9483630 DOI: 10.1016/j.xpro.2022.101676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/09/2022] [Accepted: 08/05/2022] [Indexed: 01/25/2023] Open
Abstract
At present, the only approach to investigate the transmigration of Trypanosoma brucei, the causative agent of human African trypanosomiasis, from blood to cerebrospinal fluid is through animal experiments. This protocol details how to analyze the transmigration efficiency using an in vitro model of the blood-cerebrospinal fluid (blood-CSF) barrier. We describe how to grow human choroid plexus epithelial cells on cell culture filter inserts to form the barrier, followed by isolating and quantifying genomic DNA of transmigrated parasites by qPCR. For complete details on the use and execution of this protocol, please refer to Speidel et al. (2022).
Collapse
Affiliation(s)
- Alexander Herrmann
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | | | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Mogk
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany,Corresponding author
| |
Collapse
|
5
|
Field MC. Molecular Cellular Parasitology: The Decades and Challenges Ahead. FRONTIERS IN PARASITOLOGY 2022; 1:963515. [PMID: 39816465 PMCID: PMC11732077 DOI: 10.3389/fpara.2022.963515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2025]
Affiliation(s)
- Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Biology Centre, Faculty of Science, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, Ceské Budějovice, Czechia
| |
Collapse
|