1
|
Liang J, Liu B, Christensen MJ, Li C, Zhang X, Nan Z. The effects of Pseudomonas strains isolated from Achnatherum inebrians on plant growth: A genomic perspective. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70011. [PMID: 39387603 PMCID: PMC11465459 DOI: 10.1111/1758-2229.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Achnatherum inebrians is a perennial grass widely distributed in northwest China. Nearly all wild A. inebrians plants are infected by Epichloë endophytes. In this study, bacteria from the phyllosphere were isolated from leaves of both endophyte-free and endophyte-infected A. inebrians and sequenced for identification. Pseudomonas, comprising 48.12% of the culturable bacterial communities, was the most dominant bacterial genus. Thirty-four strains from 12 Pseudomonas species were used to inoculate A. inebrians seeds and plants. Results indicated that Epichloë significantly increased the diversity and richness index of the phyllosphere. Pseudomonas Sp1, Sp3, Sp5 and Sp7 had a significantly positive effect on plant growth and photosynthesis, whereas Sp10, Sp11 and Sp12 had a significantly negative effect. Whole-genome and pan-genome analysis suggested that the variability in the effects of Pseudomonas on A. inebrians was related to differences in genome composition and genomic islands.
Collapse
Affiliation(s)
- Jinjin Liang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Bowen Liu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | | | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Xingxu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural AffairsCollege of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhouChina
| |
Collapse
|
2
|
Zhang W, Gundel PE, Jáuregui R, Card SD, Mace WJ, Johnson RD, Bastías DA. The growth promotion in endophyte symbiotic plants does not penalise the resistance to herbivores and bacterial microbiota. PLANT, CELL & ENVIRONMENT 2024; 47:2865-2878. [PMID: 38616528 DOI: 10.1111/pce.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
A trade-off between growth and defence against biotic stresses is common in plants. Fungal endophytes of the genus Epichloë may relieve this trade-off in their host grasses since they can simultaneously induce plant growth and produce antiherbivore alkaloids that circumvent the need for host defence. The Epichloë ability to decouple the growth-defence trade-off was evaluated by subjecting ryegrass with and without Epichloë endophytes to an exogenous treatment with gibberellin (GA) followed by a challenge with Rhopalosiphum padi aphids. In agreement with the endophyte-mediated trade-off decoupling hypothesis, the GA-derived promotion of plant growth increased the susceptibility to aphids in endophyte-free plants but did not affect the insect resistance in endophyte-symbiotic plants. In line with the unaltered insect resistance, the GA treatment did not reduce the concentration of Epichloë-derived alkaloids. The Epichloë mycelial biomass was transiently increased by the GA treatment but at the expense of hyphal integrity. The response of the phyllosphere bacterial microbiota to both GA treatment and Epichloë was also evaluated. Only Epichloë, and not the GA treatment, altered the composition of the phyllosphere microbiota and the abundance of certain bacterial taxa. Our findings clearly demonstrate that Epichloë does indeed relieve the plant growth-defence trade-off.
Collapse
Affiliation(s)
- Wei Zhang
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Pedro E Gundel
- Centro de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ruy Jáuregui
- Animal Health Laboratory, Biosecurity New Zealand, Ministry for Primary Industries, Upper Hutt, New Zealand
| | - Stuart D Card
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Wade J Mace
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Richard D Johnson
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| | - Daniel A Bastías
- AgResearch Limited, Grasslands Research Centre, Palmerston North, New Zealand
| |
Collapse
|
3
|
Jin Y, Chen Z, White JF, Malik K, Li C. Interactions between Epichloë endophyte and the plant microbiome impact nitrogen responses in host Achnatherum inebrians plants. Microbiol Spectr 2024; 12:e0257423. [PMID: 38488391 PMCID: PMC10986526 DOI: 10.1128/spectrum.02574-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/24/2024] [Indexed: 04/06/2024] Open
Abstract
The clavicipitaceous fungus Epichloë gansuensis forms symbiotic associations with drunken horse grass (Achnatherum inebrians), providing biotic and abiotic stress protection to its host. However, it is unclear how E. gansuensis affects the assembly of host plant-associated bacterial communities after ammonium nitrogen (NH4+-N) treatment. We examined the shoot- and root-associated bacterial microbiota and root metabolites of A. inebrians when infected (I) or uninfected (F) with E. gansuensis endophyte. The results showed more pronounced NH4+-N-induced microbial and metabolic changes in the endophyte-infected plants compared to the endophyte-free plants. E. gansuensis significantly altered bacterial community composition and β-diversity in shoots and roots and increased bacterial α-diversity under NH4+-N treatment. The relative abundance of 117 and 157 root metabolites significantly changed with E. gansuensis infection under water and NH4+-N treatment compared to endophyte-free plants. Root bacterial community composition was significantly related to the abundance of the top 30 metabolites [variable importance in the projection (VIP) > 2 and VIP > 3] contributing to differences between I and F plants, especially alkaloids. The correlation network between root microbiome and metabolites was complex. Microorganisms in the Proteobacteria and Firmicutes phyla were significantly associated with the R00693 metabolic reaction of cysteine and methionine metabolism. Co-metabolism network analysis revealed common metabolites between host plants and microorganisms.IMPORTANCEOur results suggest that the effect of endophyte infection is sensitive to nitrogen availability. Endophyte symbiosis altered the composition of shoot and root bacterial communities, increasing bacterial diversity. There was also a change in the class and relative abundance of metabolites. We found a complex co-occurrence network between root microorganisms and metabolites, with some metabolites shared between the host plant and its microbiome. The precise ecological function of the metabolites produced in response to endophyte infection remains unknown. However, some of these compounds may facilitate plant-microbe symbiosis by increasing the uptake of beneficial soil bacteria into plant tissues. Overall, these findings advance our understanding of the interactions between the microbiome, metabolome, and endophyte symbiosis in grasses. The results provide critical insight into the mechanisms by which the plant microbiome responds to nutrient stress in the presence of fungal endophytes.
Collapse
Affiliation(s)
- Yuanyuan Jin
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Tech Innovation Center of Western China Grassland Industry, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhenjiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Tech Innovation Center of Western China Grassland Industry, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - James F. White
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Tech Innovation Center of Western China Grassland Industry, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
- Gansu Tech Innovation Center of Western China Grassland Industry, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, Lanzhou University, Lanzhou, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Yang J, Xie J, Chen H, Zhu S, Hou X, Zhang Z. Diversity and Biological Characteristics of Seed-Borne Bacteria of Achnatherum splendens. Microorganisms 2024; 12:339. [PMID: 38399743 PMCID: PMC10892246 DOI: 10.3390/microorganisms12020339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
As a high-quality plant resource for ecological restoration, Achnatherum splendens has strong adaptability and wide distribution. It is a constructive species of alkaline grassland in Northwest China. The close relationship between seed-borne bacteria and seeds causes a specific co-evolutionary effect which can enhance the tolerance of plants under various stresses. In this study, 272 bacterial isolates were isolated from the seeds of Achnatherum splendens in 6 different provinces of China. In total, 41 dominant strains were identified, and their motility, biofilm formation ability and antibiotic resistance were analyzed. The results showed that the bacteria of Achnatherum splendens belonged to 3 phyla and 14 genera, of which Firmicutes was the dominant phylum and Bacillus was the dominant genus. The motility and biofilm formation ability of the isolated strains were studied. It was found that there were six strains with a moving diameter greater than 8 cm. There were 16 strains with strong biofilm formation ability, among which Bacillus with biofilm formation ability was the most common, accounting for 37.5%. The analysis of antibiotic resistance showed that sulfonamides had stronger antibacterial ability to strains. Correlation analysis showed that the resistance of strains to aminoglycosides (kanamycin, amikacin, and gentamicin) was significantly positively correlated with their biofilm formation ability. This study provides fungal resources for improving the tolerance of plants under different stresses. In addition, this is the first report on the biological characteristics of bacteria in Achnatherum splendens.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China; (J.Y.); (J.X.); (H.C.); (S.Z.); (X.H.)
| |
Collapse
|
5
|
Fu K, Schardl CL, Cook D, Cao X, Ling N, He C, Wu D, Xue L, Li Y, Shi Z. Multiomics Reveals Mechanisms of Alternaria oxytropis Inhibiting Pathogenic Fungi in Oxytropis ochrocephala. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2397-2409. [PMID: 38230662 DOI: 10.1021/acs.jafc.3c09049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Endophytic fungi can benefit the host plant and increase the plant resistance. Now, there is no in-depth study of how Alternaria oxytropis (A. oxytropis) is enhancing the ability of inhibiting pathogenic fungi in Oxytropis ochrocephala (O. ochrocephala). In this study, the fungal community and metabolites associated with endophyte-infected (EI) and endophyte-free (EF) O. ochrocephala were compared by multiomics. The fungal community indicated that there was more A. oxytropis, less phylum Ascomycota, and less genera Leptosphaeria, Colletotrichum, and Comoclathris in the EI group. As metabolic biomarkers, the levels of swainsonine and apigenin-7-O-glucoside-4-O-rutinoside were significantly increased in the EI group. Through in vitro validation experiments, swainsonine and apigenin-7-O-glucoside-4-O-rutinoside can dramatically suppress the growth of pathogenic fungi Leptosphaeria sclerotioides and Colletotrichum americae-borealis by increasing the level of oxidative stress. This work suggested that O. ochrocephala containing A. oxytropis could increase the resistance to fungal diseases by markedly enhancing the content of metabolites inhibiting pathogenic fungi.
Collapse
Affiliation(s)
- Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Christopher L Schardl
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, 1150 East 1400 North, Logan, Utah 84341, United States
| | - Xuanli Cao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Chunyu He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Longhai Xue
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yanzhong Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
6
|
Zhang Y, Cao B, Pan Y, Tao S, Zhang N. Metabolite-Mediated Responses of Phyllosphere Microbiota to Rust Infection in Two Malus Species. Microbiol Spectr 2023; 11:e0383122. [PMID: 36916990 PMCID: PMC10101083 DOI: 10.1128/spectrum.03831-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Plants recruit beneficial microbes to enhance their ability to fight pathogens. However, the current understanding of microbial recruitment is largely limited to belowground systems (root exudates and the rhizosphere). It remains unclear whether the changes in leaf metabolites induced by infectious pathogens can actively recruit beneficial microbes to mitigate the growth of foliar pathogens. In this study, we integrated microbiome and metabolomic analyses to systematically explore the dynamics of phyllosphere fungal and bacterial communities and key leaf metabolites in two crabapple species (Malus sp. "Flame" and Malus sp. "Kelsey") at six stages following infection with Gymnosporangium yamadae. Our results showed that the phyllosphere microbiome changed during lesion expansion, as highlighted by a reduction in bacterial alpha-diversity and an increase in fungal alpha-diversity; a decreasing and then an increasing complexity of the microbial co-occurrence network was observed in Kelsey and a decreasing complexity occurred in Flame. In addition, nucleotide sugars, diarylheptanoids, and carboxylic acids with aromatic rings were more abundant in early stages of collection, which positively regulated the abundance of bacterial orders Pseudomonadales (in Kelsey), Acidimicrobiales, Bacillales, and Flavobacteriales (in Flame). In addition, metabolites such as flavonoids, lignin precursors, terpenoids, coumarins, and quaternary ammonium salts enriched with the expansion of lesions had a positive regulatory effect on fungal families Rhynchogastremataceae and Golubeviaceae (in Flame) and the bacterial order Actinomycetales (in Kelsey). Our findings highlight that plants may also influence phyllosphere microorganisms by adjusting leaf metabolites in response to biotic stress. IMPORTANCE Our findings demonstrate the response patterns of bacterial and fungal communities in the Malus phyllosphere to rust fungus G. yamadae infection, and they also reveal how the phyllosphere microbiome changes with the expansion of lesions. We identified several metabolites whose relative abundance varied significantly with lesion expansion. Using a framework for assessing the role of leaf metabolites in shaping the phyllosphere microbiome of the two Malus species, we identified several specific metabolites that have profoundly selective effects on the microbial community. In conclusion, our study provides new evidence of the ecological niche of the phyllosphere in supporting the "cry for help" strategy for plants.
Collapse
Affiliation(s)
- Yunxia Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yumei Pan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| | - Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, People’s Republic of China
- Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, People’s Republic of China
| |
Collapse
|
7
|
Liang J, Gao G, Zhong R, Liu B, Christensen MJ, Ju Y, Zhang W, Li Y, Li C, Zhang X, Nan Z. Effect of Epichloë gansuensis Endophyte on Seed-Borne Microbes and Seed Metabolites in Achnatherum inebrians. Microbiol Spectr 2023; 11:e0135022. [PMID: 36786621 PMCID: PMC10100691 DOI: 10.1128/spectrum.01350-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
The seed-borne microbiota and seed metabolites of the grass Achnatherum inebrians, either host to Epichloë gansuensis (endophyte infected [EI]) or endophyte free (EF), were investigated. This study determined the microbial communities both within the seed (endophytic) and on the seed surface (epiphytic) and of the protective glumes by using Illumina sequencing technology. Epichloë gansuensis decreased the richness of the seed-borne microbiota except for the epiphytic fungi of glumes and also decreased the diversity of seed-borne microbiota. In addition, metabolites of seeds and glumes were detected using liquid chromatography-mass spectrometry (LC-MS). Unlike with the seeds of EF plants, the presence of E. gansuensis resulted in significant changes in the content of 108 seed and 31 glume metabolites. A total of 319 significant correlations occurred between seed-borne microbiota and seed metabolites; these correlations comprised 163 (147 bacterial and 16 fungal) positive correlations and 156 (136 bacterial and 20 fungal) negative correlations. Meanwhile, there were 42 significant correlations between glume microbiota and metabolites; these correlations comprised 28 positive (10 bacterial and 18 fungal) and 14 negative (9 bacterial and 5 fungal) correlations. The presence of E. gansuensis endophyte altered the communities and diversities of seed-borne microbes and altered the composition and content of seed metabolites, and there were many close and complex relationships between microbes and metabolites. IMPORTANCE The present study was to investigate seed-borne microbiota and seed metabolites in Achnatherum inebrians using high-throughput sequencing and LC-MS technology. Epichloë gansuensis decreased the richness of the seed-borne microbiota except for the epiphytic fungi of glumes and also decreased the diversity of seed-borne microbiota. Compared with endophyte-free plants, the content of 108 seed and 31 glume metabolites of endophyte-infected plants was significantly changed. There were 319 significant correlations between seed-borne microbiota and seed metabolites and 42 significant correlations between glume microbiota and metabolites.
Collapse
Affiliation(s)
- Jinjin Liang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Guoyu Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Rui Zhong
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Bowen Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | | | - Yawen Ju
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu, China
| | - Wu Zhang
- School of Geographical Science, Lingnan Normal University, Zhanjiang, China
| | - Yanzhong Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
8
|
Epichloë Endophytes Shape the Foliar Endophytic Fungal Microbiome and Alter the Auxin and Salicylic Acid Phytohormone Levels in Two Meadow Fescue Cultivars. J Fungi (Basel) 2023; 9:jof9010090. [PMID: 36675911 PMCID: PMC9861471 DOI: 10.3390/jof9010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Plants harbor a large diversity of endophytic microbes. Meadow fescue (Festuca pratensis) is a cool-season grass known for its symbiotic relationship with the systemic and vertically-via seeds-transmitted fungal endophyte Epichloë uncinata, yet its effects on plant hormones and the microbial community is largely unexplored. Here, we sequenced the endophytic bacterial and fungal communities in the leaves and roots, analyzing phytohormone concentrations and plant performance parameters in Epichloë-symbiotic (E+) and Epichloë-free (E-) individuals of two meadow fescue cultivars. The endophytic microbial community differed between leaf and root tissues independent of Epichloë symbiosis, while the fungal community was different in the leaves of Epichloë-symbiotic and Epichloë-free plants in both cultivars. At the same time, Epichloë symbiosis decreased salicylic acid and increased auxin concentrations in leaves. Epichloë-symbiotic plants showed higher biomass and higher seed mass at the end of the season. Our results demonstrate that Epichloë symbiosis alters the leaf fungal microbiota, which coincides with changes in phytohormone concentrations, indicating that Epichloë endophytes affect both plant immune responses and other fungal endophytes. Whether the effect of Epichloë endophytes on other fungal endophytes is connected to changes in phytohormone concentrations remains to be elucidated.
Collapse
|
9
|
Dale JCM, Newman JA. A First Draft of the Core Fungal Microbiome of Schedonorus arundinaceus with and without Its Fungal Mutualist Epichloë coenophiala. J Fungi (Basel) 2022; 8:jof8101026. [PMID: 36294590 PMCID: PMC9605371 DOI: 10.3390/jof8101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022] Open
Abstract
Tall fescue (Schedonorus arundinaceus) is a cool-season grass which is commonly infected with the fungal endophyte Epichloë coenophiala. Although the relationship between tall fescue and E. coenophiala is well-studied, less is known about its broader fungal communities. We used next-generation sequencing of the ITS2 region to describe the complete foliar fungal microbiomes in a set of field-grown tall fescue plants over two years, and whether these fungal communities were affected by the presence of Epichloë. We used the Georgia 5 cultivar of tall fescue, grown in the field for six years prior to sampling. Plants were either uninfected with E. coenophiala, or they were infected with one of two E. coenophiala strains: The common toxic strain or the AR542 strain (sold commerically as MaxQ). We observed 3487 amplicon sequence variants (ASVs) across all plants and identified 43 ASVs which may make up a potential core microbiome. Fungal communities did not differ strongly between Epichloë treatments, but did show a great deal of variation between the two years. Plant fitness also changed over time but was not influenced by E. coenophiala infection.
Collapse
Affiliation(s)
- Jenna C. M. Dale
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| | - Jonathan A. Newman
- Department of Biology, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|