1
|
Alves CDO, Waku I, Chiossi JN, de Oliveira AR. Dopamine D2-like receptors on conditioned and unconditioned fear: A systematic review of rodent pharmacological studies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111080. [PMID: 38950840 DOI: 10.1016/j.pnpbp.2024.111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Growing evidence supports dopamine's role in aversive states, yet systematic reviews focusing on dopamine receptors in defensive behaviors are lacking. This study presents a systematic review of the literature examining the influence of drugs acting on dopamine D2-like receptors on unconditioned and conditioned fear in rodents. The review reveals a predominant use of adult male rats in the studies, with limited inclusion of female rodents. Commonly employed tests include the elevated plus maze and auditory-cued fear conditioning. The findings indicate that systemic administration of D2-like drugs has a notable impact on both innate and learned aversive states. Generally, antagonists tend to increase unconditioned fear, while agonists decrease it. Moreover, both agonists and antagonists typically reduce conditioned fear. These effects are attributed to the involvement of distinct neural circuits in these states. The observed increase in unconditioned fear induced by D2-like antagonists aligns with dopamine's role in suppressing midbrain-mediated responses. Conversely, the reduction in conditioned fear is likely a result of blocking dopamine activity in the mesolimbic pathway. The study highlights the need for future research to delve into sex differences, explore alternative testing paradigms, and identify specific neural substrates. Such investigations have the potential to advance our understanding of the neurobiology of aversive states and enhance the therapeutic application of dopaminergic agents.
Collapse
Affiliation(s)
- Camila de Oliveira Alves
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil
| | - Isabelle Waku
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Joyce Nonato Chiossi
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Institute of Neuroscience and Behavior (INeC), Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Zhang X, Liu L, Li Y, Li X, Wang K, Han S, Wang M, Zhang Y, Zheng G, Cheng J, Wen B. Integrative neurovascular coupling and neurotransmitter analyses in anisometropic and visual deprivation amblyopia children. iScience 2024; 27:109988. [PMID: 38883835 PMCID: PMC11177132 DOI: 10.1016/j.isci.2024.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
The association between visual abnormalities and impairments in cerebral blood flow and brain region potentially results in neural dysfunction of amblyopia. Nevertheless, the differences in the complex mechanisms of brain neural network coupling and its relationship with neurotransmitters remain unclear. Here, the neurovascular coupling mechanism and neurotransmitter activity in children with anisometropic amblyopia (AA) and visual deprivation amblyopia (VDA) was explored. The neurovascular coupling of 17 brain regions in amblyopia children was significantly abnormal than in normal controls. The classification abilities of coupling units in brain regions differed between two types of amblyopia. Correlations between different coupling effects and neurotransmitters were different. The findings of this study demonstrate a correlation between the neurovascular coupling and neurotransmitter in children with AA and VDA, implying their impaired neurovascular coupling function and potential molecular underpinnings. The neuroimaging evidence revealed herein offers potential for the development of neural therapies for amblyopia.
Collapse
Affiliation(s)
- Xiaopan Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yadong Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kejia Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhu Wang
- MR Research Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Li C, Kühn NK, Alkislar I, Sans-Dublanc A, Zemmouri F, Paesmans S, Calzoni A, Ooms F, Reinhard K, Farrow K. Pathway-specific inputs to the superior colliculus support flexible responses to visual threat. SCIENCE ADVANCES 2023; 9:eade3874. [PMID: 37647395 PMCID: PMC10468139 DOI: 10.1126/sciadv.ade3874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Behavioral flexibility requires directing feedforward sensory information to appropriate targets. In the superior colliculus, divergent outputs orchestrate different responses to visual threats, but the circuit organization enabling the flexible routing of sensory information remains unknown. To determine this structure, we focused on inhibitory projection (Gad2) neurons. Trans-synaptic tracing and neuronal recordings revealed that Gad2 neurons projecting to the lateral geniculate nucleus (LGN) and the parabigeminal nucleus (PBG) form two separate populations, each receiving a different set of non-retinal inputs. Inhibiting the LGN- or PBG-projecting Gad2 neurons resulted in opposing effects on behavior; increasing freezing or escape probability to visual looming, respectively. Optogenetic activation of selected inputs to the LGN- and PBG-projecting Gad2 cells predictably regulated responses to visual threat. These data suggest that projection-specific sampling of brain-wide inputs provides a circuit design principle that enables visual inputs to be selectively routed to produce context-specific behavior.
Collapse
Affiliation(s)
- Chen Li
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Norma K. Kühn
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Ilayda Alkislar
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Northeastern University, Boston, MA, USA
| | - Arnau Sans-Dublanc
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Firdaouss Zemmouri
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Faculty of Pharmaceutical, Biomedical, and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Soraya Paesmans
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Alex Calzoni
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Frédérique Ooms
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Imec, Leuven, Belgium
| | - Katja Reinhard
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | - Karl Farrow
- Neuro-Electronics Research Flanders, VIB, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
- Imec, Leuven, Belgium
| |
Collapse
|
4
|
Benarroch E. What Are the Functions of the Superior Colliculus and Its Involvement in Neurologic Disorders? Neurology 2023; 100:784-790. [PMID: 37068960 PMCID: PMC10115501 DOI: 10.1212/wnl.0000000000207254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 04/19/2023] Open
|
5
|
Kasai M, Isa T. Effects of Light Isoflurane Anesthesia on Organization of Direction and Orientation Selectivity in the Superficial Layer of the Mouse Superior Colliculus. J Neurosci 2022; 42:619-630. [PMID: 34872926 PMCID: PMC8805619 DOI: 10.1523/jneurosci.1196-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
The superior colliculus (SC) is the midbrain center for integrating visual and multimodal sensory information. Neurons in the SC exhibit direction and orientation selectivity. Recent studies reported that neurons with similar preferences formed clusters in the mouse SC (Ahmadlou and Heimel, 2015; Feinberg and Meister, 2015; de Malmazet et al., 2018; Li et al., 2020). However, it remains controversial as to how these clusters are organized within the SC (Inayat et al., 2015; Chen et al., 2021). Here, we found that different brain states (i.e., awake or anesthetized with isoflurane) changed the selectivity of individual SC neurons and organizations of the neuronal population in both male and female mice. Using two-photon Ca2+ imaging, we examined both individual neuronal responses and the spatial patterns of their population responses. Under isoflurane anesthesia, orientation selectivity increased and a larger number of orientation-selective cells were observed when compared with the awake condition, whereas the proportions of direction-selective cells were similar in both conditions. Furthermore, direction- and orientation-selective cells located at closer positions showed more similar preferences, and cluster-like spatial patterns were enhanced. Inhibitory responses of direction-selective neurons were also reduced under isoflurane anesthesia. Thus, the changes in the spatial organization of response patterns were considered to be because of changes in the balance of excitation and inhibition, with excitation dominance, in the local circuits. These results provide new insights into the possibility that the functional organization of feature selectivity in the brain is affected by brain state.SIGNIFICANCE STATEMENT Recent large-scale recording studies are changing our view of visual maps in the superior colliculus (SC), including findings of cluster-like localizations of direction- and orientation-selective neurons. However, results from several laboratories are conflicting regarding the presence of cluster-like organization. Here, we demonstrated that light isoflurane anesthesia affected the direction- and orientation-tuning properties in the mouse superficial SC and that their cluster-like localization pattern was enhanced by the anesthesia. Furthermore, the effect of anesthesia on direction selectivity appeared to be different in the excitatory and inhibitory populations in the SC. Our results suggest that the functional organization of direction and orientation selectivity might be regulated by the excitation-inhibition balance that depends on the brain state.
Collapse
Affiliation(s)
- Masatoshi Kasai
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto 606-8501, Japan
| |
Collapse
|