1
|
Pan X, Lin L, Cao X, Jing Z, Dong L, Zhai W. Response of microbial communities and biogeochemical cycling functions to sediment physicochemical properties and microplastic pollution under damming and water diversion projects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173209. [PMID: 38754501 DOI: 10.1016/j.scitotenv.2024.173209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Understanding the interactions among flow-sediment, microorganisms, and biogeochemical cycles is crucial for comprehending the ecological response mechanisms of dams and water diversion. This study focused on the spatial patterns of carbon, nitrogen, phosphorus, and sulfur (CNPS) cycle functional genes in the water resource for the middle route of the South-to-North Water Diversion Project in China, specifically the Danjiangkou Reservoir (comprising the Han and Dan reservoirs). The investigation incorporated sediment physicochemical properties and microplastic pollution. Numerous microbial species were identified, revealing that microbial communities demonstrated sensitivity to changes in sedimentary mud content. The communities exhibited greater β diversity due to finer sediment particles in the Han Reservoir (HR), whereas in the Dan Reservoir (DR), despite having higher sediment nutrient content and MPs pollution, did not display this pattern. Regarding the composition and structure of microbial communities, the study highlighted that sediment N and P content had a more significant influence compared to particle size and MPs. The quantitative microbial element cycling (QMEC) results confirmed the presence of extensive chemolithotrophic microbes and strong nitrogen cycle activity stemming from long-term water storage and diversion operations. The denitrification intensity in the HR surpassed that of the DR. Notably, near the pre-dam area, biological nitrogen fixation, phosphorus removal, and sulfur reduction exhibited noticeable increases. Dam construction refined sediment, fostering the growth of different biogeochemical cycling bacteria and increasing the abundance of CNPS cycling genes. Furthermore, the presence of MPs exhibited a positive correlation with S cycling genes and a negative correlation with C and N cycling genes. These findings suggest that variations in flow-sediment dynamics and MPs pollution have significant impact the biogeochemical cycle of the reservoir.
Collapse
Affiliation(s)
- Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China.
| | - Xiaohuan Cao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| | - Zheng Jing
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, China
| | - Wenliang Zhai
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, China
| |
Collapse
|
2
|
Lahon J, Handique S. Impact of flooding on microplastic abundance and distribution in freshwater environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118175-118191. [PMID: 37936046 DOI: 10.1007/s11356-023-30819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Due to smaller particle size (0.1 µm-5 mm), non-biodegradable or slowly degradable nature, and high accumulation capacity in the environment, microplastics are becoming a cause of concern throughout the globe. The abundance and distribution of microplastics in aquatic compartments are strongly influenced by various natural and anthropogenic variables. Hydrodynamic conditions like flood events, caused due to extreme precipitation, accelerate the transport and settlement of microplastics in freshwater bodies. This review highlights the current literature which focuses on the effect of flooding on microplastic abundance, characterization, and distribution in freshwater environments worldwide. However, only limited research papers are identified through focused literature search, as this area of research is relatively new. Most of the studies reported increased and decreased abundance of microplastics in water and sediment samples, respectively, during post-flooding period with the exception of few studies. We also evaluate the post-flooding abundances of different morphological shape and polymer type of microplastics. Fragments, fibers, beads, and film were the most frequently reported microplastic shape and polystyrene, and polyethylene was the dominant polymer type found in freshwater environments. Future research should focus on more advanced techniques to understand microplastic fluxes under flood condition and the dominance of various natural and human-induced factors over one another in determining microplastic abundance. This will further enhance to mitigate microplastic pollution in freshwater environments.
Collapse
Affiliation(s)
- Jigyashree Lahon
- Department of Environmental Science, Tezpur University, Tezpur, 784028, Assam, India
| | - Sumi Handique
- Department of Environmental Science, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
3
|
Chen Y, Niu J, Xu D, Zhang M, Sun K, Gao B. Wet Deposition of Globally Transportable Microplastics (<25 μm) Hovering over the Megacity of Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11152-11162. [PMID: 37459058 DOI: 10.1021/acs.est.3c03474] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Microplastics of size <25 μm possess globally transportable features, but the impact of precipitation on their transport remains unclear. Here, microplastics were detected in all 10 studied rainfalls in Beijing, with <25 μm microplastics present in 8 rainfalls. Interestingly, microplastic abundance (7590-136,778 items·m-3) was tentatively linked to maximum rainfall intensity, with <25 μm microplastics making up 39.6 (±27.5)% of the total count. The composition of <25 μm microplastics differed from that of larger microplastics, although both mainly comprised polystyrene, polyethylene, and polypropylene. The microplastic communities differed among rainfalls, suggesting that atmospheric transport is a highly dynamic process. The first rainfall exhibited the highest microplastic abundance and community diversity after long-term exposure to dry atmospheric environment. The deposited microplastics were unstable and highly fragmented according to the conditional fragmentation model. The wet deposition rate of the microplastics was calculated as 2-463 μg·m-2 (146-8629 items·m-2) per rain, amounting to 25.44 tons per annum in Beijing. Although <25 μm microplastics represented a negligible proportion (0.00-1.24%) of the overall mass load of microplastics, their numerical abundance was high. Our results demonstrate that precipitation is an effective mechanism for removing airborne microplastics, which may enter urban soils and waters, exacerbate microplastic burdens in the environment, and cause potential risk for human health.
Collapse
Affiliation(s)
- Yalan Chen
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jinqiong Niu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Mengyu Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| |
Collapse
|
4
|
Chen Y, Gao B, Yang Y, Pan Z, Liu J, Sun K, Xing B. Tracking microplastics biodegradation through CO 2 emission: Role of photoaging and mineral addition. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129615. [PMID: 35870205 DOI: 10.1016/j.jhazmat.2022.129615] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Once microplastics (MPs) enter the terrestrial ecosystem, they may affect the assessment of soil carbon storage and the fluxes of greenhouse gases. This study showed microbial incubation diminished the size and dissolved organic carbon (DOC) content of MPs and introduced more oxygen-containing functional groups to MPs potentially through microbial colonization. The aged MPs generally showed higher carbon mineralization ratio (0.010-0.876 %) than the pristine MPs (0.007-0.189 %), which was supported by their higher enzyme activities and DOC content. Interestingly, four model minerals increased the DOC release and CO2 emission from MPs by altering MPs physicochemical properties and shaping the habitat for microbial growth. The higher enzyme activities in mineral artificial soils, except for montmorillonite, served as a potential valid explanation for their higher mineralization. The high CO2 emission but low enzyme activity in montmorillonite artificial soil was due to most DOC being already mineralized. Aging and minerals altered the microflora and enhanced the expression of some C metabolism- and N-related functional genes, which supplemented the cause of higher CO2 and N2O emissions from the corresponding artificial soils. Overall, the increased biomineralization of MPs carbon by minerals was divergent from the protective role of minerals on soil organic carbon.
Collapse
Affiliation(s)
- Yalan Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Yan Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jie Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|