1
|
Sun W, Wang ZX, Guo Y, Li C, Gao G, Wu FG. Iodine/soluble starch cryogel: An iodine-based antiseptic with instant water-solubility, improved stability, and potent bactericidal activity. Carbohydr Polym 2024; 340:122217. [PMID: 38857997 DOI: 10.1016/j.carbpol.2024.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 06/12/2024]
Abstract
Iodine (I2) as a broad-spectrum antiseptic has been widely used for treating bacterial infections. However, I2 has low water-solubility and sublimes under ambient conditions, which limits its practical antibacterial applications. The highly specific and sensitive reaction between I2 and starch discovered 200 years ago has been extensively applied in analytical chemistry, but the antibacterial activity of the I2-starch complex is rarely investigated. Herein, we develop a novel type of iodine-based antiseptics, iodine-soluble starch (I2-SS) cryogel, which can dissolve in water instantly and almost completely kill bacteria in 10 min at 2 μg/mL of I2. Although KI3 and the commercially available povidone‑iodine (I2-PVP) solutions show similar antibacterial efficacy, the high affinity of I2 to SS largely enhances the shelf stability of the I2-SS solution with ∼73 % I2 left after one-week storage at room temperature. In sharp contrast, ∼8.5 % and ∼2.5 % I2 are detected in KI3 and I2-PVP solutions, respectively. Mechanistic study reveals that the potent antibacterial effect of I2-SS originates from its attack on multiple bacterial targets. The outstanding antibacterial activity, capability of accelerating wound healing, and good biocompatibility of I2-SS are verified through further in vivo experiments. This work may promote the development of next-generation iodine-based antiseptics for clinical use.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China; Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA.
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Yuxin Guo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ge Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, PR China.
| |
Collapse
|
2
|
Darviot C, Gosselin B, Martin F, Patskovsky S, Jabin I, Bruylants G, Trudel D, Meunier M. Multiplexed immunolabelling of cancer using bioconjugated plasmonic gold-silver alloy nanoparticles. NANOSCALE ADVANCES 2024; 6:4385-4393. [PMID: 39170968 PMCID: PMC11334976 DOI: 10.1039/d4na00052h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
Reliable protein detection methods are vital for advancing biological research and medical diagnostics. While immunohistochemistry and immunofluorescence are commonly employed, their limitations underscore the necessity for alternative approaches. This study introduces immunoplasmonic labelling, utilizing plasmonic nanoparticles (NPs), specifically designed gold and gold-silver alloy NPs (Au:Ag NPs), for multiplexed and quantitative protein detection. These NPs, when coupled with antibodies targeting proteins of interest, enable accurate counting and evaluation of protein expression levels while overcoming issues such as autofluorescence. In this study, we compare two nanoparticle functionalization strategies-one coating based on thiolated PEG and one coating based on calix[4]arenes-on gold and gold-silver alloy nanoparticles of varying sizes. Overall results tend to demonstrate a greater versatility for the calix[4]arene-based coating. With this coating and using the classical EDC/sulfo-NHS cross-linking procedure, we also demonstrate the successful multiplexed immunolabelling of Her2, CD44, and EpCAM in breast cancer cell lines (SK-BR-3 and MDA-MB-231). Furthermore, we introduce a user-friendly software for automatic NP detection and classification by colour, providing a promising proof-of-concept for the practical application of immunoplasmonic techniques in the quantitative analysis of biopsies in the clinical setting.
Collapse
Affiliation(s)
- Cécile Darviot
- Polytechnique Montréal Montréal Canada
- Centre Hospitalier de l'Université de Montréal Montréal Canada
| | - Bryan Gosselin
- Université Libre de Bruxelles, LCO Bruxelles Belgium
- Université Libre de Bruxelles, EMNS Bruxelles Belgium
| | | | | | - Ivan Jabin
- Université Libre de Bruxelles, LCO Bruxelles Belgium
| | | | | | | |
Collapse
|
3
|
Chandran N, Ramesh S, Shanmugam R. Synthesis of Silver Nanoparticles Using Azadirachta indica and Syzygium aromaticum Extract and Its Antibacterial Action Against Enterococcus faecalis: An In Vitro Study. Cureus 2024; 16:e65044. [PMID: 39165463 PMCID: PMC11335174 DOI: 10.7759/cureus.65044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Nanotechnology is the study of manipulating matter at the atomic scale involving particles smaller than 100 nm. Silver nanoparticles (AgNPs) are gaining popularity across diverse sectors including medical, food, healthcare, consumer goods, and industrial fields due to their distinctive physical and chemical characteristics. The eco-friendly synthesis of AgNPs offers a straightforward, cost-effective, and environmentally benign method devoid of hazardous chemicals. Methodology Eighty milliliters (mL) of silver nitrate mixed with 20 mL of Azadirachta indica and Syzygium aromaticum plant extract underwent two days of magnetic stirring for AgNP synthesis. Characterization was done via ultraviolet-visible (UV-vis)-spectroscopy (300-700 nm), and antimicrobial properties, which were checked with Enterococcus faecalis, were assessed using the agar-well diffusion method. Results The change in color and peak observed in the UV-vis spectrum confirmed the successful synthesis of AgNPs. Both neem and clove extract-mediated synthesis of AgNPs exhibited antibacterial activity against E. faecalis. However, neem extract synthesized AgNPs displayed a larger inhibitory zone diameter and lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values compared to those synthesized using clove extract. Conclusion Incorporating neem and clove extracts in AgNP synthesis offers a practical, eco-friendly, and cost-efficient method with notable efficacy. These AgNPs exhibit antibacterial activity against E. faecalis, suggesting their viability as potent antibacterial agents for addressing oral pathogens. Their sustainable synthesis underscores a promising avenue for developing effective antimicrobial solutions in oral healthcare.
Collapse
Affiliation(s)
- Neena Chandran
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Sindhu Ramesh
- Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| | - Rajeshkumar Shanmugam
- Nanobiomedicine Lab, Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, IND
| |
Collapse
|
4
|
Oczkowski M, Dziendzikowska K, Gromadzka-Ostrowska J, Rakowski M, Kruszewski M. Does Nanosilver Exposure Modulate Steroid Metabolism in the Testes?-A Possible Role of Redox Balance Disruption. Biomedicines 2023; 12:73. [PMID: 38255180 PMCID: PMC10813145 DOI: 10.3390/biomedicines12010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Silver nanoparticles (AgNPs) are a popular engineered nanomaterial widely used in industry. Despite the benefits they bring to society, AgNPs are not neutral to human health. The aim of this study was to evaluate the effects of a single intravenous dose (5 mg/kg body weight) of 20 nm AgNPs on steroid metabolism and redox balance in the testes of adult rats. The effects were evaluated 1 day or 28 days after intervention and compared with saline-treated animals. Decreased aromatase and estrogen receptor α levels (by 21% and 27%, respectively) were observed 1 day after AgNPs administration, while increased testosterone, increased dihydrotestosterone levels, higher androgen receptors and higher aromatase expression in Leydig cells (by 43%, 50%, 20% and 32%, respectively) as well as lower (by 35%) androgen receptor protein levels were observed 28 days after exposure to AgNPs compared to control groups. The AgNPs treatment resulted in decreased superoxide dismutase activity, decreased GSH/GSSG ratio, and increased glutathione reductase activity (by 23%, 63% and 28%, respectively) compared to control animals, irrespective of the time of measurement. Increased (by 28%) intratesticular lipid hydroperoxides level was observed 1 day after AgNPs exposure, while decreased (by 70%) GSH and increased (by 43%) 7-ketocholesterol levels were observed 28 days after treatment compared to control animals. Conclusions: AgNPs exposure caused redox imbalance in the gonads shortly after AgNPs administration, while a longer perspective AgNPs exposure was associated with impaired androgen metabolism, probably due to increased oxidative stress.
Collapse
Affiliation(s)
- Michał Oczkowski
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776 Warsaw, Poland; (K.D.); (J.G.-O.)
| | - Katarzyna Dziendzikowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776 Warsaw, Poland; (K.D.); (J.G.-O.)
| | - Joanna Gromadzka-Ostrowska
- Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 159C, 02-776 Warsaw, Poland; (K.D.); (J.G.-O.)
| | - Michał Rakowski
- Cytometry Laboratory, Department of Oncobiology and Epigenetics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Guerrero-Arguero I, Khan SR, Henry BM, Garcia-Vilanova A, Chiem K, Ye C, Shrestha S, Knight D, Cristner M, Hill S, Waldman WJ, Dutta PK, Torrelles JB, Martinez-Sobrido L, Nagy AM. Mitigation of SARS-CoV-2 by Using Transition Metal Nanozeolites and Quaternary Ammonium Compounds as Antiviral Agents in Suspensions and Soft Fabric Materials. Int J Nanomedicine 2023; 18:2307-2324. [PMID: 37163142 PMCID: PMC10164392 DOI: 10.2147/ijn.s396669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the need for novel, affordable, and efficient reagents to help reduce viral transmission, especially in high-risk environments including medical treatment facilities, close quarters, and austere settings. We examined transition-metal nanozeolite suspensions and quaternary ammonium compounds as an antiviral surface coating for various textile materials. Methods Zeolites are crystalline porous aluminosilicate materials, with the ability of ion-exchanging different cations. Nanozeolites (30 nm) were synthesized and then ion-exchanged with silver, zinc and copper ions. Benzalkonium nitrate (BZN) was examined as the quaternary ammonium ion (quat). Suspensions of these materials were tested for antiviral activity towards SARS-CoV-2 using plaque assay and immunostaining. Suspensions of the nanozeolite and quat were deposited on polyester and cotton fabrics and the ability of these textiles towards neutralizing SARS-CoV-2 was examined. Results We hypothesized that transition metal ion containing zeolites, particularly silver and zinc (AM30) and silver and copper (AV30), would be effective in reducing the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, AM30 and AV30 antiviral potency was tested when combined with a quaternary ammonium carrier, BZN. Our results indicate that exposure of SARS-CoV-2 to AM30 and/or AV30 suspensions reduced viral loads with time and exhibited dose-dependence. Antiviral activities of the combination of zeolite and BZN compositions were significantly enhanced. When used in textiles, AM30 and AV30-coated cotton and polyester fabrics alone or in combination with BZN exhibited significant antiviral properties, which were maintained even after various stress tests, including washes, SARS-CoV-2-repeated exposures, or treatments with soil-like materials. Conclusion This study shows the efficacy of transition metal nanozeolite formulations as novel antiviral agents and establishes that nanozeolite with silver and zinc ions (AM30) and nanozeolite with silver and copper ions (AV30) when combined with benzalkonium nitrate (BZN) quickly and continuously inactivate SARS-CoV-2 in suspension and on fabric materials.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Siddiqur Rahman Khan
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Brandon M Henry
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Andreu Garcia-Vilanova
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chengjin Ye
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Deborah Knight
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Mark Cristner
- Chief Scientist’s Office of Science and Technology, 59 Medical Wing, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - Shauna Hill
- Chief Scientist’s Office of Science and Technology, 59 Medical Wing, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - W James Waldman
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Prabir K Dutta
- ZeoVation Inc., Columbus, OH, USA
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Amber M Nagy
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Chief Scientist’s Office of Science and Technology, 59 Medical Wing, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| |
Collapse
|
6
|
Majeed S, Saravanan M, Danish M, Zakariya NA, Ibrahim MNM, Rizvi EH, NisaAndrabi SU, Barabadi H, Mohanta YK, Mostafavi E. Bioengineering of green-synthesized TAT peptide-functionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abdallah EM, Modwi A, Al-Mijalli SH, Mohammed AE, Idriss H, Omar AS, Afifi M, AL-Farga A, Goh KW, Ming LC. In Vitro Influence of ZnO, CrZnO, RuZnO, and BaZnO Nanomaterials on Bacterial Growth. Molecules 2022; 27:molecules27238309. [PMID: 36500402 PMCID: PMC9740921 DOI: 10.3390/molecules27238309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
In this work, ZnO, CrZnO, RuZnO, and BaZnO nanomaterials were synthesized and characterized in order to study their antibacterial activity. The agar well diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays were used to determine the antibacterial activity of the fabricated nanomaterials against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC35218, Klebsiella pneumoniae ATCC 7000603, and Pseudomonas aeruginosa ATCC 278533. The well-diffusion test revealed significant antibacterial activity against all investigated bacteria when compared to vancomycin at a concentration of 1 mg/mL. The most susceptible bacteria to BaZnO, RuZnO, and CrZnO were Staphylococcus aureus (15.5 ± 0.5 mm), Pseudomonas aeruginosa (19.2 ± 0.5 mm), and Pseudomonas aeruginosa (19.7 ± 0.5), respectively. The MIC values indicated that they were in the range of 0.02 to 0.2 mg/mL. The MBC values showed that the tested bacteria's growth could be inhibited at concentrations ranging from 0.2 to 2.0 mg/mL. According to the MBC/MIC ratio, BaZnO, RuZnO, and CrZnO exhibit bacteriostatic effects and may target bacterial protein synthesis based on the results of the tolerance test. This study shows the efficacy of the above-mentioned nanoparticles on bacterial growth. Further biotechnological and toxicological studies on the nanoparticles fabricated here are recommended to benefit from these findings.
Collapse
Affiliation(s)
- Emad M. Abdallah
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
- Correspondence: (E.M.A.); (K.W.G.); (L.C.M.)
| | - Abueliz Modwi
- Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Samiah H. Al-Mijalli
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hajo Idriss
- Department of Physics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdulkader Shaikh Omar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21589, Saudi Arabia
| | - Mohamed Afifi
- Najla Bint Saud Al Saud Center for Distinguished Research in Biotechnology, Jeddah 21589, Saudi Arabia
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ammar AL-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah 21577, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
- Correspondence: (E.M.A.); (K.W.G.); (L.C.M.)
| | - Long Chiau Ming
- Pengiran Anak Puteri Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
- Correspondence: (E.M.A.); (K.W.G.); (L.C.M.)
| |
Collapse
|
8
|
Segneanu AE, Vlase G, Lukinich-Gruia AT, Herea DD, Grozescu I. Untargeted Metabolomic Approach of Curcuma longa to Neurodegenerative Phytocarrier System Based on Silver Nanoparticles. Antioxidants (Basel) 2022; 11:2261. [PMID: 36421447 PMCID: PMC9686783 DOI: 10.3390/antiox11112261] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 08/26/2023] Open
Abstract
Curcuma is one of the most famous medicinal and tropical aromatic plants. Its health benefits have been appreciated and exploited in traditional Asian medicine since ancient times. Various studies have investigated its complex chemical composition and demonstrated the remarkable therapeutic properties of curcuma's phytoconstituents. Oxidative stress is a decisive driving factor triggering numerous pathologies (neurodegenerative, psychiatric and cardiovascular diseases; diabetes; tumors, etc.). Numerous recent studies have focused on the use of natural compounds and nanomaterials as innovative molecular targeting agents as effective therapeutic strategies. In this study, we report, for the first time, the development of a simple target phytocarrier system that capitalizes on the bioactive properties of curcuma and AgNPs. The complete metabolic profile of curcuma was determined based on gas chromatography-mass spectrometry (GC-MS) and electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). A total of 80 metabolites were identified under mass spectra (MS)-positive mode from 10 secondary metabolite categories: terpenoids, amino acids, diarylheptanoids, flavonoids, phenolic acids, steroids, fatty acids, coumarins, alkaloids and miscellaneous. In addition, the biological activity of each class of metabolites was discussed. A comprehensive characterization (FT-IR, UV-Vis, DLS, SEM, TEM, EDS, zeta potential and XRD) was performed to study the morphostructural properties of this new phytocarrier system. Antioxidant activity of the new phytocarrier system was evaluated using a combination of in vitro methods (total phenolic assay, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and cyclic voltammetric method (Trolox equivalent antioxidant capacity (TEAC) electrochemical assay)). Antioxidants assays showed that the phytocarrier system exhibits superior antioxidant properties to those of its components, i.e., curcuma or citrate-coated-AgNPs. These data confirm the potential to enhance relevant theoretical knowledge in the area of innovative antioxidant agents, with potential application in neurodegenerative therapeutic strategies.
Collapse
Affiliation(s)
- Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania
| | - Gabriela Vlase
- Institute for Advanced Environmental Research, West University of Timisoara (ICAM-WUT), Oituz nr. 4, 300086 Timisoara, Romania
- Res. Ctr. Thermal Anal Environm Problems, West University of Timisoara, Pestalozzi St. 16, 300115 Timisoara, Romania
| | | | - Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Mangeron Blvd, 700050 Iasi, Romania
| | - Ioan Grozescu
- CAICON Department, University Politehnica Timisoara, 2 P-ta Victoriei, 300006 Timisoara, Romania
| |
Collapse
|