1
|
Karger S, Miali ME, Solomonov A, Eliaz D, Varsano N, Shimanovich U. Protein Compartments Modulate Fibrillar Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308069. [PMID: 38148317 DOI: 10.1002/smll.202308069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/04/2023] [Indexed: 12/28/2023]
Abstract
A notable feature of complex cellular environments is protein-rich compartments that are formed via liquid-liquid phase separation. Recent studies have shown that these biomolecular condensates can play both promoting and inhibitory roles in fibrillar protein self-assembly, a process that is linked to Alzheimer's, Parkinson's, Huntington's, and various prion diseases. Yet, the exact regulatory role of these condensates in protein aggregation remains unknown. By employing microfluidics to create artificial protein compartments, the self-assembly behavior of the fibrillar protein lysozyme within them can be characterized. It is observed that the volumetric parameters of protein-rich compartments can change the kinetics of protein self-assembly. Depending on the change in compartment parameters, the lysozyme fibrillation process either accelerated or decelerated. Furthermore, the results confirm that the volumetric parameters govern not only the nucleation and growth phases of the fibrillar aggregates but also affect the crosstalk between the protein-rich and protein-poor phases. The appearance of phase-separated compartments in the vicinity of natively folded protein complexes triggers their abrupt percolation into the compartments' core and further accelerates protein aggregation. Overall, the results of the study shed more light on the complex behavior and functions of protein-rich phases and, importantly, on their interaction with the surrounding environment.
Collapse
Affiliation(s)
- Shay Karger
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Marco E Miali
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Aleksei Solomonov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Dror Eliaz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulyana Shimanovich
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
2
|
Venturi S, Rossi B, Tortora M, Torre R, Lapini A, Foggi P, Paolantoni M, Catalini S. Amyloidogenic and non-amyloidogenic molten globule conformation of β-lactoglobulin in self-crowded regime. Int J Biol Macromol 2023; 242:124621. [PMID: 37141974 DOI: 10.1016/j.ijbiomac.2023.124621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
Molecular insights on the β-lactoglobulin thermal unfolding and aggregation are derived from FTIR and UV Resonance Raman (UVRR) investigations. We propose an in situ and in real-time approach that thanks to the identification of specific spectroscopic markers can distinguish the two different unfolding pathways pursued by β-lactoglobulin during the conformational transition from the folded to the molten globule state, as triggered by the pH conditions. For both the investigated pH values (1.4 and 7.5) the greatest conformational variation of β-lactoglobulin occurs at 80 °C and a high degree of structural reversibility after cooling is observed. In acidic condition β-lactoglobulin exposes to the solvent its hydrophobic moieties in a much higher extent than in neutral solution, resulting on a highly open conformation. Moving from the diluted to the self-crowded regime, the solution pH and consequently the different molten globule conformation select the amyloid or non-amyloid aggregation pathway. At acidic condition the amyloid aggregates form during the heating cycle leading to the formation of transparent hydrogel. On the contrary, in neutral condition the amyloid aggregates never form. Information on the secondary structure conformational change of β-lactoglobulin and the formation of amyloid aggregates are obtained by FTIR spectroscopy and are related to the information of the structural changes localized around the aromatic amino acid sites by UVRR technique. Our results highlight a strong involvement of the chain portions where tryptophan is located on the formation of amyloid aggregates.
Collapse
Affiliation(s)
- Sara Venturi
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy
| | - Mariagrazia Tortora
- Elettra-Sincrotrone Trieste, S.S. 114 km 163.5, Basovizza, 34149 Trieste, Italy; AREA SCIENCE PARK, Padriciano, 99, 34149 Trieste, Italy
| | - Renato Torre
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Dipartimento di Fisica ed Astronomia, Università di Firenze, Via G. Sansone, 1, 50019 Sesto Fiorentino, Italy
| | - Andrea Lapini
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze, 17/A, 43124 Parma, PR, Italy
| | - Paolo Foggi
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy; CNR-INO, Consiglio Nazionale Delle Ricerche - Istituto Nazionale di Ottica, Largo Fermi 6, 50125 Florence, Italy
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di sotto 8, 06123 Perugia, Italy.
| | - Sara Catalini
- European Laboratory for Non-Linear Spectroscopy, Università di Firenze, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; CNR-INO, Consiglio Nazionale Delle Ricerche - Istituto Nazionale di Ottica, Largo Fermi 6, 50125 Florence, Italy; Dipartimento di Fisica e Geologia, Università di Perugia, 06123, Via Pascoli, Perugia, Italy.
| |
Collapse
|