1
|
Cometa A, Battaglini C, Artoni F, Greco M, Frank R, Repetto C, Bottoni F, Cappa SF, Micera S, Ricciardi E, Moro A. Brain and grammar: revealing electrophysiological basic structures with competing statistical models. Cereb Cortex 2024; 34:bhae317. [PMID: 39098819 DOI: 10.1093/cercor/bhae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
Acoustic, lexical, and syntactic information are simultaneously processed in the brain requiring complex strategies to distinguish their electrophysiological activity. Capitalizing on previous works that factor out acoustic information, we could concentrate on the lexical and syntactic contribution to language processing by testing competing statistical models. We exploited electroencephalographic recordings and compared different surprisal models selectively involving lexical information, part of speech, or syntactic structures in various combinations. Electroencephalographic responses were recorded in 32 participants during listening to affirmative active declarative sentences. We compared the activation corresponding to basic syntactic structures, such as noun phrases vs. verb phrases. Lexical and syntactic processing activates different frequency bands, partially different time windows, and different networks. Moreover, surprisal models based on part of speech inventory only do not explain well the electrophysiological data, while those including syntactic information do. By disentangling acoustic, lexical, and syntactic information, we demonstrated differential brain sensitivity to syntactic information. These results confirm and extend previous measures obtained with intracranial recordings, supporting our hypothesis that syntactic structures are crucial in neural language processing. This study provides a detailed understanding of how the brain processes syntactic information, highlighting the importance of syntactic surprisal in shaping neural responses during language comprehension.
Collapse
Affiliation(s)
- Andrea Cometa
- MoMiLab, IMT School for Advanced Studies Lucca, Piazza S.Francesco, 19, Lucca 55100, Italy
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Cognitive Neuroscience (ICoN) Center, University School for Advanced Studies IUSS, Piazza Vittoria 15, Pavia 27100, Italy
| | - Chiara Battaglini
- Neurolinguistics and Experimental Pragmatics (NEP) Lab, University School for Advanced Studies IUSS Pavia, Piazza della Vittoria 15, Pavia 27100, Italy
| | - Fiorenzo Artoni
- Department of Clinical Neurosciences, Faculty of Medicine, University of Geneva, 1, rue Michel-Servet, Genéve 1211, Switzerland
| | - Matteo Greco
- Cognitive Neuroscience (ICoN) Center, University School for Advanced Studies IUSS, Piazza Vittoria 15, Pavia 27100, Italy
| | - Robert Frank
- Department of Linguistics, Yale University, 370 Temple St, New Haven, CT 06511, United States
| | - Claudia Repetto
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo A. Gemelli 1, Milan 20123, Italy
| | - Franco Bottoni
- Istituto Clinico Humanitas, IRCCS, Via Alessandro Manzoni 56, Rozzano 20089, Italy
| | - Stefano F Cappa
- Cognitive Neuroscience (ICoN) Center, University School for Advanced Studies IUSS, Piazza Vittoria 15, Pavia 27100, Italy
- Dementia Research Center, IRCCS Mondino Foundation National Institute of Neurology, Via Mondino 2, Pavia 27100, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
- Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and School of Engineering, Ecole Polytechnique Federale de Lausanne, Campus Biotech, Chemin des Mines 9, Geneva, GE CH 1202, Switzerland
| | - Emiliano Ricciardi
- MoMiLab, IMT School for Advanced Studies Lucca, Piazza S.Francesco, 19, Lucca 55100, Italy
| | - Andrea Moro
- Cognitive Neuroscience (ICoN) Center, University School for Advanced Studies IUSS, Piazza Vittoria 15, Pavia 27100, Italy
| |
Collapse
|
2
|
Liu Y, Liu R, Ge J, Wang Y. Advancements in brain-machine interfaces for application in the metaverse. Front Neurosci 2024; 18:1383319. [PMID: 38919909 PMCID: PMC11198002 DOI: 10.3389/fnins.2024.1383319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, with the shift of focus in metaverse research toward content exchange and social interaction, breaking through the current bottleneck of audio-visual media interaction has become an urgent issue. The use of brain-machine interfaces for sensory simulation is one of the proposed solutions. Currently, brain-machine interfaces have demonstrated irreplaceable potential as physiological signal acquisition tools in various fields within the metaverse. This study explores three application scenarios: generative art in the metaverse, serious gaming for healthcare in metaverse medicine, and brain-machine interface applications for facial expression synthesis in the virtual society of the metaverse. It investigates existing commercial products and patents (such as MindWave Mobile, GVS, and Galea), draws analogies with the development processes of network security and neurosecurity, bioethics and neuroethics, and discusses the challenges and potential issues that may arise when brain-machine interfaces mature and are widely applied. Furthermore, it looks ahead to the diverse possibilities of deep and varied applications of brain-machine interfaces in the metaverse in the future.
Collapse
Affiliation(s)
- Yang Liu
- Department of Ophthalmology, First Hospital of China Medical University, Shengyang, China
| | - Ruibin Liu
- Department of Clinical Integration of Traditional Chinese and Western medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jinnian Ge
- Department of General Surgery, First Hospital of China Medical University, Shengyang, China
| | - Yue Wang
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
3
|
Guerreiro Fernandes F, Raemaekers M, Freudenburg Z, Ramsey N. Considerations for implanting speech brain computer interfaces based on functional magnetic resonance imaging. J Neural Eng 2024; 21:036005. [PMID: 38648782 DOI: 10.1088/1741-2552/ad4178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Objective.Brain-computer interfaces (BCIs) have the potential to reinstate lost communication faculties. Results from speech decoding studies indicate that a usable speech BCI based on activity in the sensorimotor cortex (SMC) can be achieved using subdurally implanted electrodes. However, the optimal characteristics for a successful speech implant are largely unknown. We address this topic in a high field blood oxygenation level dependent functional magnetic resonance imaging (fMRI) study, by assessing the decodability of spoken words as a function of hemisphere, gyrus, sulcal depth, and position along the ventral/dorsal-axis.Approach.Twelve subjects conducted a 7T fMRI experiment in which they pronounced 6 different pseudo-words over 6 runs. We divided the SMC by hemisphere, gyrus, sulcal depth, and position along the ventral/dorsal axis. Classification was performed on in these SMC areas using multiclass support vector machine (SVM).Main results.Significant classification was possible from the SMC, but no preference for the left or right hemisphere, nor for the precentral or postcentral gyrus for optimal word classification was detected. Classification while using information from the cortical surface was slightly better than when using information from deep in the central sulcus and was highest within the ventral 50% of SMC. Confusion matrices where highly similar across the entire SMC. An SVM-searchlight analysis revealed significant classification in the superior temporal gyrus and left planum temporale in addition to the SMC.Significance.The current results support a unilateral implant using surface electrodes, covering the ventral 50% of the SMC. The added value of depth electrodes is unclear. We did not observe evidence for variations in the qualitative nature of information across SMC. The current results need to be confirmed in paralyzed patients performing attempted speech.
Collapse
Affiliation(s)
- F Guerreiro Fernandes
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - M Raemaekers
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Z Freudenburg
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - N Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Bhidayasiri R. The grand challenge at the frontiers of neurotechnology and its emerging clinical applications. Front Neurol 2024; 15:1314477. [PMID: 38299015 PMCID: PMC10827995 DOI: 10.3389/fneur.2024.1314477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Affiliation(s)
- Roongroj Bhidayasiri
- Department of Medicine, Faculty of Medicine, Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|