1
|
Li R, Yang P, Zhang H, Wang C, Zhao F, Liu J, Wang Y, Liang Y, Sun T, Xie X. Comparative Genomic and Functional Analysis of c-di-GMP Metabolism and Regulatory Proteins in Bacillus velezensis LQ-3. Microorganisms 2024; 12:1724. [PMID: 39203566 PMCID: PMC11357230 DOI: 10.3390/microorganisms12081724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Bacillus velezensis is a promising candidate for biocontrol applications. A common second messenger molecule, bis-(3,5)-cyclic-dimeric-guanosine monophosphate (c-di-GMP), has the ability to regulate a range of physiological functions that impact the effectiveness of biocontrol. However, the status of the c-di-GMP signaling pathway in biocontrol strain LQ-3 remains unknown. Strain LQ-3, which was isolated from wheat rhizosphere soil, has shown effective control of wheat sharp eyespot and has been identified as B. velezensis through whole-genome sequencing analyses. In this study, we investigated the intracellular c-di-GMP signaling pathway of LQ-3 and further performed a comparative genomic analysis of LQ-3 and 29 other B. velezensis strains. The results revealed the presence of four proteins containing the GGDEF domain, which is the conserved domain for c-di-GMP synthesis enzymes. Additionally, two proteins were identified with the EAL domain, which represents the conserved domain for c-di-GMP degradation enzymes. Furthermore, one protein was found to possess a PilZ domain, indicative of the conserved domain for c-di-GMP receptors in LQ-3. These proteins are called DgcK, DgcP, YybT, YdaK, PdeH, YkuI, and DgrA, respectively; they are distributed in a similar manner across the strains and belong to the signal transduction family. We selected five genes from the aforementioned seven genes for further study, excluding YybT and DgrA. They all play a role in regulating the motility, biofilm formation, and colonization of LQ-3. This study reveals the c-di-GMP signaling pathway associated with biocontrol features in B. velezensis LQ-3, providing guidance for the prevention and control of wheat sharp eyespot by LQ-3.
Collapse
Affiliation(s)
- Rong Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Panlei Yang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Hongjuan Zhang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Chunjing Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Fang Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Jiehui Liu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yanbin Wang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Yan Liang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Ting Sun
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| | - Xiansheng Xie
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China; (R.L.); (H.Z.); (C.W.); (F.Z.); (J.L.); (Y.W.); (Y.L.); (T.S.)
| |
Collapse
|
2
|
Huang W, Wang D, Zhang XX, Zhao M, Sun L, Zhou Y, Guan X, Xie Z. Regulatory roles of the second messenger c-di-GMP in beneficial plant-bacteria interactions. Microbiol Res 2024; 285:127748. [PMID: 38735241 DOI: 10.1016/j.micres.2024.127748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
The rhizosphere system of plants hosts a diverse consortium of bacteria that confer beneficial effects on plant, such as plant growth-promoting rhizobacteria (PGPR), biocontrol agents with disease-suppression activities, and symbiotic nitrogen fixing bacteria with the formation of root nodule. Efficient colonization in planta is of fundamental importance for promoting of these beneficial activities. However, the process of root colonization is complex, consisting of multiple stages, including chemotaxis, adhesion, aggregation, and biofilm formation. The secondary messenger, c-di-GMP (cyclic bis-(3'-5') dimeric guanosine monophosphate), plays a key regulatory role in a variety of physiological processes. This paper reviews recent progress on the actions of c-di-GMP in plant beneficial bacteria, with a specific focus on its role in chemotaxis, biofilm formation, and nodulation.
Collapse
Affiliation(s)
- Weiwei Huang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Mengguang Zhao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Li Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Yanan Zhou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Xin Guan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong Province 271018, China.
| |
Collapse
|
3
|
Pai L, Patil S, Liu S, Wen F. A growing battlefield in the war against biofilm-induced antimicrobial resistance: insights from reviews on antibiotic resistance. Front Cell Infect Microbiol 2023; 13:1327069. [PMID: 38188636 PMCID: PMC10770264 DOI: 10.3389/fcimb.2023.1327069] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Biofilms are a common survival strategy employed by bacteria in healthcare settings, which enhances their resistance to antimicrobial and biocidal agents making infections difficult to treat. Mechanisms of biofilm-induced antimicrobial resistance involve reduced penetration of antimicrobial agents, increased expression of efflux pumps, altered microbial physiology, and genetic changes in the bacterial population. Factors contributing to the formation of biofilms include nutrient availability, temperature, pH, surface properties, and microbial interactions. Biofilm-associated infections can have serious consequences for patient outcomes, and standard antimicrobial therapies are often ineffective against biofilm-associated bacteria, making diagnosis and treatment challenging. Novel strategies, including antibiotics combination therapies (such as daptomycin and vancomycin, colistin and azithromycin), biofilm-targeted agents (such as small molecules (LP3134, LP3145, LP4010, LP1062) target c-di-GMP), and immunomodulatory therapies (such as the anti-PcrV IgY antibodies which target Type IIIsecretion system), are being developed to combat biofilm-induced antimicrobial resistance. A multifaceted approach to diagnosis, treatment, and prevention is necessary to address this emerging problem in healthcare settings.
Collapse
Affiliation(s)
- Liu Pai
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sandip Patil
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| | - Sixi Liu
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Pediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
4
|
Liu Y, Liu X, Dong X, Yin Z, Xie Z, Luo Y. Systematic Analysis of Lysine Acetylation Reveals Diverse Functions in Azorhizobium caulinodans Strain ORS571. Microbiol Spectr 2023; 11:e0353922. [PMID: 36475778 PMCID: PMC9927263 DOI: 10.1128/spectrum.03539-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation can quickly modify the physiology of bacteria to respond to changes in environmental or nutritional conditions, but little information on these modifications is available in rhizobia. In this study, we report the lysine acetylome of Azorhizobium caulinodans strain ORS571, a model rhizobium isolated from stem nodules of the tropical legume Sesbania rostrata that is capable of fixing nitrogen in the free-living state and during symbiosis. Antibody enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis were used to characterize the acetylome. There are 2,302 acetylation sites from 982 proteins, accounting for 20.8% of the total proteins. Analysis of the acetylated motifs showed the preferences for the amino acid residues around acetylated lysines. The response regulator CheY1, previously characterized to be involved in chemotaxis in strain ORS571, was identified as an acetylated protein, and a mutation of the acetylated site of CheY1 significantly impaired the strain's motility. In addition, a Zn+-dependent deacetylase (AZC_0414) was characterized, and the construction of a deletion mutant strain showed that it played a role in chemotaxis. Our study provides the first global analysis of lysine acetylation in ORS571, suggesting that acetylation plays a role in various physiological processes. In addition, we demonstrate its involvement in the chemotaxis process. The acetylome of ORS571 provides insights to investigate the regulation mechanism of rhizobial physiology. IMPORTANCE Acetylation is an important modification that regulates protein function and has been found to regulate physiological processes in various bacteria. The physiology of rhizobium A. caulinodans ORS571 is regulated by multiple mechanisms both when free living and in symbiosis with the host; however, the regulatory role of acetylation is not yet known. Here, we took an acetylome-wide approach to identify acetylated proteins in A. caulinodans ORS571 and performed clustering analyses. Acetylation of chemotaxis proteins was preliminarily investigated, and the upstream acetylation-regulating enzyme involved in chemotaxis was characterized. These findings provide new insights to explore the physiological mechanisms of rhizobia.
Collapse
Affiliation(s)
- Yanan Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|