1
|
Gupta C, Mundan NG, Das S, Jawed A, Dar SA, Dailah HG. Cytomegalovirus Infections in Hematopoietic Stem Cell Transplant: Moving Beyond Molecular Diagnostics to Immunodiagnostics. Diagnostics (Basel) 2024; 14:2523. [PMID: 39594189 PMCID: PMC11592488 DOI: 10.3390/diagnostics14222523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Human CMV, regularly reactivated by simple triggers, results in asymptomatic viral shedding, powerful cellular immune responses, and memory inflation. Immunocompetent individuals benefit from a robust immune response, which aids in viral management without causing clinically significant illness; however, immunodeficient individuals are always at a higher risk of CMV reactivation and disease. Hematopoietic stem cell transplant (HSCT) recipients are consistently at higher risk of CMV reactivation and clinically significant CMV illness due to primary disease, immunosuppression, and graft vs. host disease. Early recovery of CMV-CMI responses may mitigate effects of viral reactivation in HSCT recipients. Immune reconstitution following transplantation occurs spontaneously and is mediated initially by donor-derived T cells, followed by clonal growth of T cells produced from graft progenitors. CMV-specific immune reconstitution post-transplant is related to spontaneous clearance of CMV reactivation and may eliminate the need for prophylactic or pre-emptive medication, making it a potential predictive marker for monitoring CMV reactivation. This review highlights current thoughts and therapeutic options for CMV reactivation in HSCT, with focus on CMV immune reconstitution and post-HSCT monitoring. Immune monitoring aids in risk stratification of transplant recipients who may progress from CMV reactivation to clinically significant CMV infection. Implementing this approach in clinical practice reduces the need for periodic viral surveillance and antiviral therapy in recipients who have a high CMV-CMI and thus may experience self-limited reactivation. Therefore, in the age of precision medicine, it is critical to incorporate CMV-specific cellular immune surveillance into conventional procedures and algorithms for the management of transplant recipients.
Collapse
Affiliation(s)
- Chhavi Gupta
- Department of Infectious Diseases, Yashoda Super Speciality Hospital, Ghaziabad 201001, India
| | - Netto George Mundan
- Department of Infectious Diseases, Government Medical College, Kottayam 686008, India
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences and GTB Hospital (University of Delhi), Delhi 110095, India
| | - Arshad Jawed
- College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia (S.A.D.)
| | - Sajad Ahmad Dar
- College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia (S.A.D.)
| | - Hamad Ghaleb Dailah
- College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia (S.A.D.)
| |
Collapse
|
2
|
Jaing TH, Wang YL, Chiu CC. Antiviral Agents for Preventing Cytomegalovirus Disease in Recipients of Hematopoietic Cell Transplantation. Viruses 2024; 16:1268. [PMID: 39205242 PMCID: PMC11359103 DOI: 10.3390/v16081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review discusses the use of prophylaxis to prevent cytomegalovirus (CMV) infection in recipients who have undergone hematopoietic cell transplantation. It highlights the need for new approaches to control and prevent CMV infection. The approval of the anti-CMV drug letermovir has made antiviral prophylaxis more popular. CMV-specific T cell-mediated immunity tests are effective in identifying patients who have undergone immune reconstitution and predicting disease progression. Maribavir (MBV) has been approved for the treatment of post-transplant CMV infection/disease in adolescents. Adoptive T-cell therapy and the PepVax CMV vaccine show promise in tackling refractory and resistant CMV. However, the effectiveness of PepVax in reducing CMV viremia/disease was not demonstrated in a phase II trial. Cell-mediated immunity assays are valuable for personalized management plans, but more interventional studies are needed. MBV and adoptive T-cell therapy are promising treatments, and trials for CMV vaccines are ongoing.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| | - Chia-Chi Chiu
- Division of Nursing, Chang Gung Memorial Hospital, Taoyuan 33315, Taiwan;
| |
Collapse
|
3
|
AlQahtani HY, AlSuhebany N, Alowais SA, AlShehri B, Althemery A, Alghanim A, Alqahtani H, Alkhathran L, Alyaqub M, Alsulimani M, AlHarbi A, Alhatmi H, Almansour S, Almohaya A, Bosaeed M. Characterization of recurrent cytomegalovirus reactivations post allogenic stem cell transplantation in a population with high seropositivity. Virol J 2024; 21:149. [PMID: 38956615 PMCID: PMC11218190 DOI: 10.1186/s12985-024-02421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVES This study aimed to characterize incidences of CMV reactivations within one year post-allo-SCT and identify risk factors for CMV second reactivation episode in population with high seropositivity where first CMV reactivation episode deemed to be high. METHODS This retrospective cohort study analyzed data from 359 allo-SCT patients aged 14 and older admitted to a tertiary academic hospital. Data on demographic and clinical factors, CMV serostatus, conditioning regimens, graft-versus-host disease prophylaxis, engraftment time, and CMV reactivations were collected. RESULTS First and second CMV reactivations occurred in 88.9% and 18.4% of post-allo-SCT patients respectively. Patients were stratified into two groups based on primary disease necessitating allo-SCT, patients with malignant (Group 1) and non-malignant (Group 2) hematological disease. Factors associated with the second reactivation included cord blood as a stem cell source, human leukocyte antigen mismatch, acute graft-versus-host disease, and hematological malignancies. Patients with non-malignant hematological disease displayed better outcomes, including a higher rate of spontaneous clearance of first CMV reactivation (70% versus 49.4%) and lower rates of second CMV reactivation (9.6% versus 31%) than those with malignant hematological disease. The one-year overall survival rate was 87.7% (95.5% in non-malignant hematological disease and 78.13% in malignant hematological disease). CONCLUSION Our findings are concordant with previous local study in regard to high rate of first CMV reactivation post-allo-SCT. It appears that patients with nonmalignant hematological disease had better outcomes, such as lower second CMV reactivation and higher survival rates compared to patients with malignant hematological disease. Further investigation is needed to identify other factors affecting recurrent CMV reactivations in allo-SCT in patients with malignant hematological disease.
Collapse
Affiliation(s)
- Hajar Y AlQahtani
- Department of Pharmaceutical Care, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia.
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | - Nada AlSuhebany
- Department of Pharmaceutical Care, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Shuroug A Alowais
- Department of Pharmaceutical Care, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Bashayer AlShehri
- Department of Pharmaceutical Care, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Abdullah Althemery
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Al Riyadh Province, Saudi Arabia
| | - Amirah Alghanim
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hessa Alqahtani
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Lama Alkhathran
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Majd Alyaqub
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mariam Alsulimani
- College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmad AlHarbi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hind Alhatmi
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Sarah Almansour
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Abdulellah Almohaya
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Mohammed Bosaeed
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Division of Infectious Diseases, Department of Medicine, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Bharti R, Calabrese DR. Innate and adaptive effector immune drivers of cytomegalovirus disease in lung transplantation: a double-edged sword. FRONTIERS IN TRANSPLANTATION 2024; 3:1388393. [PMID: 38993763 PMCID: PMC11235306 DOI: 10.3389/frtra.2024.1388393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 07/13/2024]
Abstract
Up to 90% of the global population has been infected with cytomegalovirus (CMV), a herpesvirus that remains latent for the lifetime of the host and drives immune dysregulation. CMV is a critical risk factor for poor outcomes after solid organ transplant, though lung transplant recipients (LTR) carry the highest risk of CMV infection, and CMV-associated comorbidities compared to recipients of other solid organ transplants. Despite potent antivirals, CMV remains a significant driver of chronic lung allograft dysfunction (CLAD), re-transplantation, and death. Moreover, the extended utilization of CMV antiviral prophylaxis is not without adverse effects, often necessitating treatment discontinuation. Thus, there is a critical need to understand the immune response to CMV after lung transplantation. This review identifies key elements of each arm of the CMV immune response and highlights implications for lung allograft tolerance and injury. Specific attention is paid to cellular subsets of adaptive and innate immune cells that are important in the lung during CMV infection and reactivation. The concept of heterologous immune responses is reviewed in depth, including how they form and how they may drive tissue- and allograft-specific immunity. Other important objectives of this review are to detail the emerging role of NK cells in CMV-related outcomes, in addition to discussing perturbations in CMV immune function stemming from pre-existing lung disease. Finally, this review identifies potential mechanisms whereby CMV-directed treatments may alter the cellular immune response within the allograft.
Collapse
Affiliation(s)
- Reena Bharti
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Daniel R. Calabrese
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| |
Collapse
|
5
|
Rein AF, Lauruschkat CD, Muchsin I, Köchel C, Tischer-Zimmermann S, Bauersfeld L, Nelde A, Lübke M, Prusty BK, Schlosser A, Halenius A, Eiz-Vesper B, Dölken L, Grigoleit GU, Einsele H, Erhard F, Kraus S. Identification of novel canonical and cryptic HCMV-specific T-cell epitopes for HLA-A∗03 and HLA-B∗15 via peptide-PRISM. Blood Adv 2024; 8:712-724. [PMID: 38127299 PMCID: PMC10845030 DOI: 10.1182/bloodadvances.2023011120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023] Open
Abstract
ABSTRACT Human cytomegalovirus (HCMV) reactivation poses a substantial risk to patients receiving tranplants. Effective risk stratification and vaccine development is hampered by a lack of HCMV-derived immunogenic peptides in patients with common HLA-A∗03:01 and HLA-B∗15:01 haplotypes. This study aimed to discover novel HCMV immunogenic peptides for these haplotypes by combining ribosome sequencing (Ribo-seq) and mass spectrometry with state-of-the-art computational tools, Peptide-PRISM and Probabilistic Inference of Codon Activities by an EM Algorithm. Furthermore, using machine learning, an algorithm was developed to predict immunogenicity based on translational activity, binding affinity, and peptide localization within small open reading frames to identify the most promising peptides for in vitro validation. Immunogenicity of these peptides was subsequently tested by analyzing peptide-specific T-cell responses of HCMV-seropositive and -seronegative healthy donors as well as patients with transplants. This resulted in the direct identification of 3 canonical and 1 cryptic HLA-A∗03-restricted immunogenic peptides as well as 5 canonical and 1 cryptic HLA-B∗15-restricted immunogenic peptide, with a specific interferon gamma-positive (IFN-γ+)/CD8+ T-cell response of ≥0.02%. High T-cell responses were detected against 2 HLA-A∗03-restricted and 3 HLA-B∗15-restricted canonical peptides with frequencies of up to 8.77% IFN-γ+/CD8+ T cells in patients after allogeneic stem cell transplantation. Therefore, our comprehensive strategy establishes a framework for efficient identification of novel immunogenic peptides from both existing and novel Ribo-seq data sets.
Collapse
Affiliation(s)
- Alice Felicitas Rein
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Ihsan Muchsin
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carolin Köchel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Liane Bauersfeld
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Annika Nelde
- Department of Peptide-based Immunotherapy, University Hospital Tübingen, Tübingen, Germany
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies,” University of Tübingen, Tübingen, Germany
| | - Maren Lübke
- Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Bhupesh Kumar Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center - Center for Integrative and Translational Bioimaging, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Anne Halenius
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Götz Ulrich Grigoleit
- Department of Hematology, Oncology and Immunology, Helios Hospital Duisburg, Duisburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Wang Y, Mei X, Lin Z, Yang X, Cao J, Zhong J, Wang J, Cheng L, Wang Z. Virus infection pattern imprinted and diversified the differentiation of T-cell memory in transcription and function. Front Immunol 2024; 14:1334597. [PMID: 38264657 PMCID: PMC10803622 DOI: 10.3389/fimmu.2023.1334597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Memory T (Tm) cells are a subpopulation of immune cells with great heterogeneity. Part of this diversity came from T cells that were primed with different viruses. Understanding the differences among different viral-specific Tms will help develop new therapeutic strategies for viral infections. Methods In this study, we compared the transcriptome of Tm cells that primed with CMV, EBV and SARS-CoV-2 with single-cell sequencing and studied the similarities and differences in terms of subpopulation composition, activation, metabolism and transcriptional regulation. Results We found that CMV is marked by plentiful cytotoxic Temra cells, while EBV is more abundant in functional Tem cells. More importantly, we found that CD28 and CTLA4 can be used as continuous indicators to interrogate the antiviral ability of T cells. Furthermore, we proposed that REL is a main regulatory factor for CMV-specific T cells producing cytokines and plays an antiviral role. Discussion Our data gives deep insight into molecular characteristics of Tm subsets from different viral infection, which is important to understand T cell immunization. Furthermore, our results provide basic background knowledges for T cell based vaccine development in future.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Xinyue Mei
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhengfang Lin
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Jinpeng Cao
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| | - Jiaying Zhong
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junxiang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Cheng
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Bioland, Guangzhou, Guangdong, China
| |
Collapse
|