1
|
Wang S, Cao X, Li H, Shan Z, Wang T, Li C, Wu Q. FtbHLH1, a transcription factor that interacts with FtATG8a, enhances the drought stress response in Tartary buckwheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 222:109729. [PMID: 40037176 DOI: 10.1016/j.plaphy.2025.109729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Tartary buckwheat (Fagopyrum tataricum) is a traditional cereal crop cultivated in hilly, arid, cool mountainous regions. The bHLH transcription factors play a pivotal role in regulating flavonoid metabolism and enhancing resistance to extreme environments in Tartary buckwheat. However, the functional characterization of bHLH genes in this species remains incomplete. Previous research identified FtbHLH1 as an interacting partner of the key autophagy protein FtATG8a through yeast library screening. Yeast two-hybrid, bimolecular fluorescence complementation, and luciferase complementation imaging assays confirmed that FtbHLH1 interacts with FtATG8a. This interaction depends on the AIM motifs (LEWYYL and QSWHFV) present in FtbHLH1, with both proteins co-localizing in the nucleus. The expression of FtbHLH1 was significantly induced by drought stress (P < 0.05), and its overexpression led to increased drought tolerance in transgenic Tartary buckwheat hairy roots. RNA sequencing revealed that FtbHLH1 up-regulated genes associated with stress response (e.g., FtCu/ZnSOD) as well as those involved in abscisic acid and methyl jasmonate biosynthesis and signaling pathways (e.g., FtCYP707As, FtRD29B, and FtJAZs). Further analysis indicated that the overexpression of FtbHLH1 enhances drought stress tolerance by altering the activities of antioxidant enzymes and promoting proline accumulation in both transgenic Arabidopsis and Tartary buckwheat hairy roots. This study provides theoretical support for selecting drought-resistant Tartary buckwheat varieties by elucidating the role of FtbHLH1 in the response to drought stress.
Collapse
Affiliation(s)
- Shuang Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agriculture University, Chengdu, 611130, China
| | - XinYi Cao
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang, Guizhou, 550025, China
| | - Zhi Shan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Tao Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
2
|
Solé-Gil A, Sakai Y, Catarino B, Jones VAS, Youngstrom CE, Jordà-Segura J, Cheng CL, Dolan L, Ambrose BA, Ishizaki K, Blázquez MA, Agustí J. Divergent evolution of a thermospermine-dependent regulatory pathway in land plants. Dev Cell 2024:S1534-5807(24)00766-4. [PMID: 39793581 DOI: 10.1016/j.devcel.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/18/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
Plants adapted to life on land by developing diverse anatomical features across lineages. The molecular basis of these innovations often involves the emergence of new genes or establishing new connections between conserved elements, though evidence for evolutionary genetic circuit rewiring remains scarce. Here, we show that the thermospermine-dependent pathway regulating vascular cell proliferation in Arabidopsis thaliana operates as two distinct modules with different functions in the bryophyte Marchantia polymorpha. One module controls dichotomous branching at meristems, while the other one modulates gemmae and rhizoid production in the thallus. Heterologous assays and comparative expression analyses reveal that the molecular links between these modules, forming a unified circuit in vascular plants, emerged early in tracheophyte evolution. Our results illustrate how the thermospermine-dependent circuit elements followed two divergent evolutionary trajectories in bryophytes and tracheophytes, eventually influencing distinct developmental processes.
Collapse
Affiliation(s)
- Anna Solé-Gil
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Yuuki Sakai
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Bruno Catarino
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Victor A S Jones
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | | | - Joan Jordà-Segura
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain
| | - Chi-Lien Cheng
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Liam Dolan
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK; Gregor Mendel Institute, Vienna 1030, Austria
| | | | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain.
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), 46022 Valencia, Spain.
| |
Collapse
|
3
|
Yang B, Sun Y, Minne M, Ge Y, Yue Q, Goossens V, Mor E, Callebaut B, Bevernaege K, Winne JM, Audenaert D, De Rybel B. SPL13 controls a root apical meristem phase change by triggering oriented cell divisions. Science 2024; 386:eado4298. [PMID: 39541454 PMCID: PMC7616863 DOI: 10.1126/science.ado4298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024]
Abstract
Oriented cell divisions are crucial for determining the overall morphology and size of plants, but what controls the onset and duration of this process remains largely unknown. Here, we identified a small molecule that activates root apical meristem (RAM) expression of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE13 (SPL13) a known player in the shoot's juvenile-to-adult transition. This expression leads to oriented cell divisions in the RAM through SHORT ROOT (SHR) and cell cycle regulators. We further show that the RAM has distinct juvenile and adult phases typed by morphological and molecular characteristics and that SPL factors are crucially required for this transition in Arabidopsis and rice (Oryza sativa). In summary, we provide molecular insights into the age-dependent morphological changes occurring in the RAM during phase change.
Collapse
Affiliation(s)
- Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Yanhua Ge
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianru Yue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vera Goossens
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Eliana Mor
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Brenda Callebaut
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Kevin Bevernaege
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Johan M. Winne
- Ghent University, Department of Organic and Macromolecular Chemistry, Ghent, Belgium
| | - Dominique Audenaert
- VIB Screening Core, Ghent, Belgium
- Ghent University Centre for Bioassay Development and Screening (C-BIOS), Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
4
|
Wybouw B, Zhang X, Mähönen AP. Vascular cambium stem cells: past, present and future. THE NEW PHYTOLOGIST 2024; 243:851-865. [PMID: 38890801 DOI: 10.1111/nph.19897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Secondary xylem and phloem originate from a lateral meristem called the vascular cambium that consists of one to several layers of meristematic cells. Recent lineage tracing studies have shown that only one of the cambial cells in each radial cell file functions as the stem cell, capable of producing both secondary xylem and phloem. Here, we first review how phytohormones and signalling peptides regulate vascular cambium formation and activity. We then propose how the stem cell concept, familiar from apical meristems, could be applied to cambium studies. Finally, we discuss how this concept could set the basis for future research.
Collapse
Affiliation(s)
- Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Xixi Zhang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
5
|
Gao F, Dubos C. The arabidopsis bHLH transcription factor family. TRENDS IN PLANT SCIENCE 2024; 29:668-680. [PMID: 38143207 DOI: 10.1016/j.tplants.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023]
Abstract
Basic helix-loop-helices (bHLHs) are present in all eukaryotes and form one of the largest families of transcription factors (TFs) found in plants. bHLHs function as transcriptional activators and/or repressors of genes involved in key processes involved in plant growth and development in interaction with the environment (e.g., stomata and root hair development, iron homeostasis, and response to heat and shade). Recent studies have improved our understanding of the functioning of bHLH TFs in complex regulatory networks where a series of post-translational modifications (PTMs) have critical roles in regulating their subcellular localization, DNA-binding capacity, transcriptional activity, and/or stability (e.g., protein-protein interactions, phosphorylation, ubiquitination, and sumoylation). Further elucidating the function and regulation of bHLHs will help further understanding of the biology of plants in general and for the development of new tools for crop improvement.
Collapse
Affiliation(s)
- Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China.
| | - Christian Dubos
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
6
|
Min Y, Yu H, Li Q. Transcriptional and post-translational regulation of MITF mediated by bHLH domain during the melanogenesis and melanocyte proliferation in Crassostrea gigas. Int J Biol Macromol 2024; 266:131138. [PMID: 38547943 DOI: 10.1016/j.ijbiomac.2024.131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Melanocyte differentiation is orchestrated by the master regulator transcription factor MITF. However, its ability to discern distinct binding sites linked to effective gene regulation remains poorly understood. This study aims to assess how co-activator acetyltransferase interacts with MITF to modulate their related lysine action, thereby mediating downstream gene regulation, including DNA affinity, stability, transcriptional activity, particularly in the process of shell pigmentation. Here, we have demonstrated that the CgMITF protein can be acetylated, further enabling selective amplification of the melanocyte maturation program. Collaboration with transcriptional co-regulator p300 advances MITF dynamically interplay with downstream targeted gene promoters. We have established that MITF activation was partially dependent on the bHLH domain, which was well conserved across species. The bHLH domain contained conserved lysine residues, including K6 and K43, which interacted with the E-box motif of downstream targeted-genes. Mutations at K6 and K43 lead to a decrease in the binding affinity of the E-box motif. CgMITF protein bound to the E-box motif within the promoter regions of the tyrosinase-related genes, contributing to melanogenesis, and also interacted with the E-box motif within the TBX2 promoter regions, associated with melanocyte proliferation. We elucidated how the bHLH domain links the transcriptional regulation and acetylation modifications in the melanocyte development in C. gigas.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
7
|
Zhang Y, Lu Y, Xu F, Zhang X, Wu Y, Zhao J, Luo Q, Liu H, Chen K, Fei S, Cui X, Sun Y, Ou M. Molecular Characterization, Expression Pattern, DNA Methylation and Gene Disruption of Figla in Blotched Snakehead ( Channa maculata). Animals (Basel) 2024; 14:491. [PMID: 38338134 PMCID: PMC10854511 DOI: 10.3390/ani14030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Figla is one of the earliest expressed genes in the oocyte during ovarian development. In this study, Figla was characterized in C. maculata, one of the main aquaculture species in China, and designated as CmFigla. The length of CmFigla cDNA was 1303 bp, encoding 197 amino acids that contained a conserved bHLH domain. CmFigla revealed a female-biased expression patterns in the gonads of adult fish, and CmFigla expression was far higher in ovaries than that in testes at all gonadal development stages, especially at 60~180 days post-fertilization (dpf). Furthermore, a noteworthy inverse relationship was observed between CmFigla expression and the methylation of its promoter in the adult gonads. Gonads at 90 dpf were used for in situ hybridization (ISH), and CmFigla transcripts were mainly concentrated in oogonia and the primary oocytes in ovaries, but undetectable in the testes. These results indicated that Figla would play vital roles in the ovarian development in C. maculata. Additionally, the frame-shift mutations of CmFigla were successfully constructed through the CRISPR/Cas9 system, which established a positive foundation for further investigation on the role of Figla in the ovarian development of C. maculata. Our study provides valuable clues for exploring the regulatory mechanism of Figla in the fish ovarian development and maintenance, which would be useful for the sex control and reproduction of fish in aquaculture.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Yuntao Lu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Feng Xu
- Chongqing Fisheries Technical Extension Center, Chongqing 404100, China;
| | - Xiaotian Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Yuxia Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Xiaojuan Cui
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
| | - Yuandong Sun
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
| | - Mi Ou
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| |
Collapse
|
8
|
Konstantinova N, Mor E, Verhelst E, Nolf J, Vereecken K, Wang F, Van Damme D, De Rybel B, Glanc M. A precise balance of TETRASPANIN1/TORNADO2 activity is required for vascular proliferation and ground tissue patterning in Arabidopsis. PHYSIOLOGIA PLANTARUM 2024; 176:e14182. [PMID: 38618986 DOI: 10.1111/ppl.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 04/16/2024]
Abstract
The molecular mechanisms guiding oriented cell divisions in the root vascular tissues of Arabidopsis thaliana are still poorly characterised. By overlapping bulk and single-cell transcriptomic datasets, we unveiled TETRASPANIN1 (TET1) as a putative regulator in this process. TET1 is expressed in root vascular cells, and loss-of-function mutants contain fewer vascular cell files. We further generated and characterised a CRISPR deletion mutant and showed, unlike previously described mutants, that the full knock out is additionally missing endodermal cells in a stochastic way. Finally, we show that HA-tagged versions of TET1 are functional in contrast to fluorescent TET1 translational fusions. Immunostaining using HA-TET1 lines complementing the mutant phenotype suggested a dual plasma membrane and intracellular localisation in the root vasculature and a polar membrane localisation in the young cortex, endodermal and initial cells. Taken together, we show that TET1 is involved in both vascular proliferation and ground tissue patterning. Our initial results pave the way for future work to decipher its precise mode of action.
Collapse
Affiliation(s)
- Nataliia Konstantinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Eliana Mor
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Eline Verhelst
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Kenzo Vereecken
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Feng Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| | - Matouš Glanc
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
9
|
Sun Y, Yang B, De Rybel B. Hormonal control of the molecular networks guiding vascular tissue development in the primary root meristem of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6964-6974. [PMID: 37343122 PMCID: PMC7615341 DOI: 10.1093/jxb/erad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Vascular tissues serve a dual function in plants, both providing physical support and controlling the transport of nutrients, water, hormones, and other small signaling molecules. Xylem tissues transport water from root to shoot; phloem tissues transfer photosynthates from shoot to root; while divisions of the (pro)cambium increase the number of xylem and phloem cells. Although vascular development constitutes a continuous process from primary growth in the early embryo and meristem regions to secondary growth in the mature plant organs, it can be artificially separated into distinct processes including cell type specification, proliferation, patterning, and differentiation. In this review, we focus on how hormonal signals orchestrate the molecular regulation of vascular development in the Arabidopsis primary root meristem. Although auxin and cytokinin have taken center stage in this aspect since their discovery, other hormones including brassinosteroids, abscisic acid, and jasmonic acid also take leading roles during vascular development. All these hormonal cues synergistically or antagonistically participate in the development of vascular tissues, forming a complex hormonal control network.
Collapse
Affiliation(s)
- Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
10
|
Wang X, Mäkilä R, Mähönen AP. From procambium patterning to cambium activation and maintenance in the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102404. [PMID: 37352651 DOI: 10.1016/j.pbi.2023.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/25/2023]
Abstract
In addition to primary growth, which elongates the plant body, many plant species also undergo secondary growth to thicken their body. During primary vascular development, a subset of the vascular cells, called procambium and pericycle, remain undifferentiated to later gain vascular cambium and cork cambium identity, respectively. These two cambia are the lateral meristems providing secondary growth. The vascular cambium produces secondary xylem and phloem, which give plants mechanical support and transport capacity. Cork cambium produces a protective layer called cork. In this review, we focus on recent advances in understanding the formation of procambium and its gradual maturation to active cambium in the Arabidopsis thaliana root.
Collapse
Affiliation(s)
- Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Šmeringai J, Schrumpfová PP, Pernisová M. Cytokinins - regulators of de novo shoot organogenesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1239133. [PMID: 37662179 PMCID: PMC10471832 DOI: 10.3389/fpls.2023.1239133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Plants, unlike animals, possess a unique developmental plasticity, that allows them to adapt to changing environmental conditions. A fundamental aspect of this plasticity is their ability to undergo postembryonic de novo organogenesis. This requires the presence of regulators that trigger and mediate specific spatiotemporal changes in developmental programs. The phytohormone cytokinin has been known as a principal regulator of plant development for more than six decades. In de novo shoot organogenesis and in vitro shoot regeneration, cytokinins are the prime candidates for the signal that determines shoot identity. Both processes of de novo shoot apical meristem development are accompanied by changes in gene expression, cell fate reprogramming, and the switching-on of the shoot-specific homeodomain regulator, WUSCHEL. Current understanding about the role of cytokinins in the shoot regeneration will be discussed.
Collapse
Affiliation(s)
- Ján Šmeringai
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Markéta Pernisová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czechia
| |
Collapse
|