1
|
Paparoni F, Alizon G, Zitolo A, Rezvani SJ, Di Cicco A, Magnan H, Fonda E. A novel electrochemical flow-cell for operando XAS investigations in X-ray opaque supports. Phys Chem Chem Phys 2024; 26:3897-3906. [PMID: 38230576 DOI: 10.1039/d3cp04701f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Improvement of electrochemical technologies is one of the most popular topics in the field of renewable energy. However, this process requires a deep understanding of the electrode-electrolyte interface behavior under operando conditions. X-ray absorption spectroscopy (XAS) is widely employed to characterize electrode materials, providing element-selective oxidation state and local structure. Several existing cells allow studies as close as possible to realistic operating conditions, but most of them rely on the deposition of the electrodes on conductive and X-ray transparent materials, from where the radiation impinges the sample. In this work, we present a new electrochemical flow-cell for operando XAS that can be used with X-ray opaque substrates, since the signal is effectively detected from the electrode surface, as the radiation passes through a thin layer of electrolyte (∼17 μm). The electrolyte can flow over the electrode, reducing bubble formation and avoiding strong reactant concentration gradients. We show that high-quality data can be obtained under operando conditions, thanks to the high efficiency of the cell from the hard X-ray regime down to ∼4 keV. We report as a case study the operando XAS investigation at the Fe and Ni K-edges on Ni-doped γ-Fe2O3 films, epitaxially grown on Pt substrates. The effect of the Ni content on the catalytic performances for the oxygen evolution reaction is discussed.
Collapse
Affiliation(s)
- Francesco Paparoni
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
- Sez. Fisica, Scuola di Scienze e Tecnologie, Universitá di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy
| | - Guillaume Alizon
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
| | - Andrea Zitolo
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
| | - Seyed Javad Rezvani
- Sez. Fisica, Scuola di Scienze e Tecnologie, Universitá di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy
- CNR-IOM, SS14 - km 163.5 in Area Science Park, 34149, Trieste, Italy
| | - Andrea Di Cicco
- Sez. Fisica, Scuola di Scienze e Tecnologie, Universitá di Camerino, via Madonna delle Carceri, I-62032 Camerino, Italy
| | - Hélène Magnan
- Université Paris-Saclay, CEA, CNRS, Service de Physique de l'Etat Condensé, F-91191 Gif-sur-Yvette, France
| | - Emiliano Fonda
- Synchrotron SOLEIL, Départementale 128, 91190 Saint-Aubin, France.
| |
Collapse
|
2
|
Lu Q, Hu Y, Yang J, Yang H, Xiao L, Zhao F, Gao H, Jiang W, Hao G. Thermal Decomposition Mechanism of Ammonium Nitrate on the Main Crystal Surface of Ferric Oxide: Experimental and Theoretical Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2198-2209. [PMID: 38241713 DOI: 10.1021/acs.langmuir.3c03230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Understanding the decomposition process of ammonium nitrate (AN) on catalyst surfaces is crucial for the development of practical and efficient catalysts in AN-based propellants. In this study, two types of nano-Fe2O3 catalysts were synthesized: spherical particles with high-exposure (104) facets and flaky particles with high-exposure (110) facets. Through thermal analysis and particle size analysis, it was found that the nanosheet-Fe2O3 catalyst achieved more complete AN decomposition despite having a larger average particle size compared to nanosphere-Fe2O3. Subsequently, the effects of AN pyrolysis on the (110) and (104) facets were investigated by theoretical simulations. Through studying the interaction between AN and crystal facets, it was determined that the electron transfer efficiency on the (110) facet is stronger compared to that on the (104) facet. Additionally, the free-energy step diagrams for the reaction of the AN molecule on the two facets were calculated with the DFT + U method. Comparative analysis led us to conclude that the (110) facet of α-Fe2O3 is more favorable for AN pyrolysis compared to the (104) facet. Our study seeks to deepen the understanding of the mechanism underlying AN pyrolysis and present new ideas for the development of effective catalysts in AN pyrolysis.
Collapse
Affiliation(s)
- Qiangqiang Lu
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yiwen Hu
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Junqing Yang
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hongyu Yang
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lei Xiao
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fengqi Zhao
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Hongxu Gao
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Wei Jiang
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Gazi Hao
- National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Naveas N, Pulido R, Marini C, Gargiani P, Hernandez-Montelongo J, Brito I, Manso-Silván M. First-Principles Calculations of Magnetite (Fe 3O 4) above the Verwey Temperature by Using Self-Consistent DFT + U + V. J Chem Theory Comput 2023; 19:8610-8623. [PMID: 37974305 PMCID: PMC10720343 DOI: 10.1021/acs.jctc.3c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
In this report, we have used the DFT + U + V approach, an extension of the DFT + U approach that takes into account both on-site and intersite interactions, to simulate structural, magnetic, and electronic properties together with the Fe and O K-edge XAS spectra of Fe3O4 above the Verwey temperature (Tv). Moreover, we compared the simulated XAS spectra with experimental XAS data. We examined both orthogonalized and nonorthogonalized atomic orbital projectors and compared DFT + U + V to DFT, DFT + U, and HSE as a hybrid functional. It is noteworthy that, despite the widespread use of the same Hubbard U value for Feoct and Fetet at the DFT + U level in the literature, the HP code identified two distinct values for them using the Hubbard approaches (DFT + U and DFT + U + V). The resulting Hubbard U and V parameters are strongly dependent on the chosen orbital projectors. This study demonstrates how DFT + U + V can improve the structural, magnetic, and electronic properties of Fe3O4 compared to approximate DFT and DFT + U. In this context, DFT + U + V supports the half-metallic character of the bulk crystal Fe3O4 above Tv, since the Fermi level is found in the t2g band with a Feoct down-spin. Thus, the observations in the current study emphasize the significance of intersite interactions in the theoretical analysis of Fe3O4 above the Tv.
Collapse
Affiliation(s)
- Nelson Naveas
- Departamento
de Física Aplicada, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Departamento
de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Avenida Angamos 601, 1270300 Antofagasta, Chile
- Instituto
Universitario de Ciencia de Materiales “Nicolás Cabrera”
(INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Ruth Pulido
- Instituto
Universitario de Ciencia de Materiales “Nicolás Cabrera”
(INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Departamento
de Química, Universidad de Antofagasta, Avenida Angamos 601, 1270300 Antofagasta, Chile
| | - Carlo Marini
- CELLS−ALBA
Synchrotron, 08290 Cerdanyola del Valles, Spain
| | | | | | - Ivan Brito
- Departamento
de Química, Universidad de Antofagasta, Avenida Angamos 601, 1270300 Antofagasta, Chile
| | - Miguel Manso-Silván
- Departamento
de Física Aplicada, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
- Instituto
Universitario de Ciencia de Materiales “Nicolás Cabrera”
(INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Centro
de Microanálisis de Materiales, Universidad
Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|