1
|
Li N, Shi J, Chen Z, Dong Z, Ma S, Li Y, Huang X, Li X. In silico prediction of drug-induced nephrotoxicity: current progress and pitfalls. Expert Opin Drug Metab Toxicol 2024:1-13. [PMID: 39360665 DOI: 10.1080/17425255.2024.2412629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION Due to its role in absorption and metabolism, the kidney is an important target for drug toxicity. Drug-induced nephrotoxicity (DIN) presents a significant challenge in clinical practice and drug development. Conventional methods for assessing nephrotoxicity have limitations, highlighting the need for innovative approaches. In recent years, in silico methods have emerged as promising tools for predicting DIN. AREAS COVERED A literature search was performed using PubMed and Web of Science, from 2013 to February 2023 for this review. This review provides an overview of the current progress and pitfalls in the in silico prediction of DIN, which discusses the principles and methodologies of computational models. EXPERT OPINION Despite significant advancements, this review identified issues accentuates the pivotal imperatives of data fidelity, model optimization, interdisciplinary collaboration, and mechanistic comprehension in sculpting the vista of DIN prediction. Integration of multiple data sources and collaboration between disciplines are essential for improving predictive models. Ultimately, a holistic approach combining computational, experimental, and clinical methods will enhance our understanding and management of DIN.
Collapse
Affiliation(s)
- Na Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Juan Shi
- Department of Clinical Pharmacy, The First People's Hospital of Jinan, Jinan, China
| | - Zhaoyang Chen
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Zhonghua Dong
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Shiyu Ma
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xin Huang
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| | - Xiao Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China
| |
Collapse
|
2
|
Meier MJ, Harrill J, Johnson K, Thomas RS, Tong W, Rager JE, Yauk CL. Progress in toxicogenomics to protect human health. Nat Rev Genet 2024:10.1038/s41576-024-00767-1. [PMID: 39223311 DOI: 10.1038/s41576-024-00767-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Toxicogenomics measures molecular features, such as transcripts, proteins, metabolites and epigenomic modifications, to understand and predict the toxicological effects of environmental and pharmaceutical exposures. Transcriptomics has become an integral tool in contemporary toxicology research owing to innovations in gene expression profiling that can provide mechanistic and quantitative information at scale. These data can be used to predict toxicological hazards through the use of transcriptomic biomarkers, network inference analyses, pattern-matching approaches and artificial intelligence. Furthermore, emerging approaches, such as high-throughput dose-response modelling, can leverage toxicogenomic data for human health protection even in the absence of predicting specific hazards. Finally, single-cell transcriptomics and multi-omics provide detailed insights into toxicological mechanisms. Here, we review the progress since the inception of toxicogenomics in applying transcriptomics towards toxicology testing and highlight advances that are transforming risk assessment.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Joshua Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Kamin Johnson
- Predictive Safety Center, Corteva Agriscience, Indianapolis, IN, USA
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR, USA
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- The Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Jaume G, Peeters T, Song AH, Pettit R, Williamson DFK, Oldenburg L, Vaidya A, de Brot S, Chen RJ, Thiran JP, Le LP, Gerber G, Mahmood F. AI-driven Discovery of Morphomolecular Signatures in Toxicology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604355. [PMID: 39091765 PMCID: PMC11291055 DOI: 10.1101/2024.07.19.604355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Early identification of drug toxicity is essential yet challenging in drug development. At the preclinical stage, toxicity is assessed with histopathological examination of tissue sections from animal models to detect morphological lesions. To complement this analysis, toxicogenomics is increasingly employed to understand the mechanism of action of the compound and ultimately identify lesion-specific safety biomarkers for which in vitro assays can be designed. However, existing works that aim to identify morphological correlates of expression changes rely on qualitative or semi-quantitative morphological characterization and remain limited in scale or morphological diversity. Artificial intelligence (AI) offers a promising approach for quantitatively modeling this relationship at an unprecedented scale. Here, we introduce GEESE, an AI model designed to impute morphomolecular signatures in toxicology data. Our model was trained to predict 1,536 gene targets on a cohort of 8,231 hematoxylin and eosin-stained liver sections from Rattus norvegicus across 127 preclinical toxicity studies. The model, evaluated on 2,002 tissue sections from 29 held-out studies, can yield pseudo-spatially resolved gene expression maps, which we correlate with six key drug-induced liver injuries (DILI). From the resulting 25 million lesion-expression pairs, we established quantitative relations between up and downregulated genes and lesions. Validation of these signatures against toxicogenomic databases, pathway enrichment analyses, and human hepatocyte cell lines asserted their relevance. Overall, our study introduces new methods for characterizing toxicity at an unprecedented scale and granularity, paving the way for AI-driven discovery of toxicity biomarkers.
Collapse
Affiliation(s)
- Guillaume Jaume
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
| | - Thomas Peeters
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Signal Processing Laboratory, EPFL, Lausanne, Switzerland
| | - Andrew H. Song
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
| | - Rowland Pettit
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Drew F. K. Williamson
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA
| | - Lukas Oldenburg
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Anurag Vaidya
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA
| | - Simone de Brot
- Institute of Animal Pathology, Vetsuisse, University of Bern, Switzerland
- COMPATH, Institute of Animal Pathology, University of Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Switzerland
| | - Richard J. Chen
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
| | | | - Long Phi Le
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Harvard Data Science Initiative, Harvard University, Cambridge, MA
| | - Georg Gerber
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA
- Harvard Data Science Initiative, Harvard University, Cambridge, MA
| |
Collapse
|
4
|
Vlasveld M, Callegaro G, Fisher C, Eakins J, Walker P, Lok S, van Oost S, de Jong B, Pellegrino-Coppola D, Burger G, Wink S, van de Water B. The integrated stress response-related expression of CHOP due to mitochondrial toxicity is a warning sign for DILI liability. Liver Int 2024; 44:760-775. [PMID: 38217387 DOI: 10.1111/liv.15822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND AND AIMS Drug-induced liver injury (DILI) is one of the most frequent reasons for failure of drugs in clinical trials or market withdrawal. Early assessment of DILI risk remains a major challenge during drug development. Here, we present a mechanism-based weight-of-evidence approach able to identify certain candidate compounds with DILI liabilities due to mitochondrial toxicity. METHODS A total of 1587 FDA-approved drugs and 378 kinase inhibitors were screened for cellular stress response activation associated with DILI using an imaging-based HepG2 BAC-GFP reporter platform including the integrated stress response (CHOP), DNA damage response (P21) and oxidative stress response (SRXN1). RESULTS In total 389, 219 and 104 drugs were able to induce CHOP-GFP, P21-GFP and SRXN1-GFP expression at 50 μM respectively. Concentration response analysis identified 154 FDA-approved drugs as critical CHOP-GFP inducers. Based on predicted and observed (pre-)clinical DILI liabilities of these drugs, nine antimycotic drugs (e.g. butoconazole, miconazole, tioconazole) and 13 central nervous system (CNS) agents (e.g. duloxetine, fluoxetine) were selected for transcriptomic evaluation using whole-genome RNA-sequencing of primary human hepatocytes. Gene network analysis uncovered mitochondrial processes, NRF2 signalling and xenobiotic metabolism as most affected by the antimycotic drugs and CNS agents. Both the selected antimycotics and CNS agents caused impairment of mitochondrial oxygen consumption in both HepG2 and primary human hepatocytes. CONCLUSIONS Together, the results suggest that early pre-clinical screening for CHOP expression could indicate liability of mitochondrial toxicity in the context of DILI, and, therefore, could serve as an important warning signal to consider during decision-making in drug development.
Collapse
Affiliation(s)
- Matthijs Vlasveld
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Giulia Callegaro
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | | | | | | | - Samantha Lok
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Siddh van Oost
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Brechtje de Jong
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Damiano Pellegrino-Coppola
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Gerhard Burger
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Steven Wink
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Bob van de Water
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Pandiri AR, Auerbach SS, Stevens JL, Blomme EAG. Toxicogenomics Approaches to Address Toxicity and Carcinogenicity in the Liver. Toxicol Pathol 2023; 51:470-481. [PMID: 38288963 PMCID: PMC11014763 DOI: 10.1177/01926233241227942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Toxicogenomic technologies query the genome, transcriptome, proteome, and the epigenome in a variety of toxicological conditions. Due to practical considerations related to the dynamic range of the assays, sensitivity, cost, and technological limitations, transcriptomic approaches are predominantly used in toxicogenomics. Toxicogenomics is being used to understand the mechanisms of toxicity and carcinogenicity, evaluate the translational relevance of toxicological responses from in vivo and in vitro models, and identify predictive biomarkers of disease and exposure. In this session, a brief overview of various transcriptomic technologies and practical considerations related to experimental design was provided. The advantages of gene network analyses to define mechanisms were also discussed. An assessment of the utility of toxicogenomic technologies in the environmental and pharmaceutical space showed that these technologies are being increasingly used to gain mechanistic insights and determining the translational relevance of adverse findings. Within the environmental toxicology area, there is a broader regulatory consideration of benchmark doses derived from toxicogenomics data. In contrast, these approaches are mainly used for internal decision-making in pharmaceutical development. Finally, the development and application of toxicogenomic signatures for prediction of apical endpoints of regulatory concern continues to be area of intense research.
Collapse
Affiliation(s)
- Arun R Pandiri
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Scott S Auerbach
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | | | | |
Collapse
|
6
|
Valls-Margarit J, Piñero J, Füzi B, Cerisier N, Taboureau O, Furlong LI. Assessing network-based methods in the context of system toxicology. Front Pharmacol 2023; 14:1225697. [PMID: 37502213 PMCID: PMC10369070 DOI: 10.3389/fphar.2023.1225697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: Network-based methods are promising approaches in systems toxicology because they can be used to predict the effects of drugs and chemicals on health, to elucidate the mode of action of compounds, and to identify biomarkers of toxicity. Over the years, the network biology community has developed a wide range of methods, and users are faced with the task of choosing the most appropriate method for their own application. Furthermore, the advantages and limitations of each method are difficult to determine without a proper standard and comparative evaluation of their performance. This study aims to evaluate different network-based methods that can be used to gain biological insight into the mechanisms of drug toxicity, using valproic acid (VPA)-induced liver steatosis as a benchmark. Methods: We provide a comprehensive analysis of the results produced by each method and highlight the fact that the experimental design (how the method is applied) is relevant in addition to the method specifications. We also contribute with a systematic methodology to analyse the results of the methods individually and in a comparative manner. Results: Our results show that the evaluated tools differ in their performance against the benchmark and in their ability to provide novel insights into the mechanism of adverse effects of the drug. We also suggest that aggregation of the results provided by different methods provides a more confident set of candidate genes and processes to further the knowledge of the drug's mechanism of action. Discussion: By providing a detailed and systematic analysis of the results of different network-based tools, we aim to assist users in making informed decisions about the most appropriate method for systems toxicology applications.
Collapse
Affiliation(s)
| | - Janet Piñero
- Medbioinformatics Solutions SL, Barcelona, Spain
| | - Barbara Füzi
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Natacha Cerisier
- Université Paris Cité, CNRS, INSERM U1133, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Olivier Taboureau
- Université Paris Cité, CNRS, INSERM U1133, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | | |
Collapse
|