1
|
Gu X, Zhao S, Xia M, Du S, Song L, Xia T, Zhang B. Causal impacts of 731 immunocyte phenotypes on colorectal cancer-evidence from a bidirectional two-sample Mendelian randomization. Hum Vaccin Immunother 2024; 20:2432115. [PMID: 39584495 PMCID: PMC11591552 DOI: 10.1080/21645515.2024.2432115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Colorectal cancer is one of the most common and lethal malignancies, and various factors have been confirmed to contribute to its occurrence. However, the causal role of immune cell-specific changes in the development of colorectal cancer has not been investigated. The bidirectional two-sample Mendelian randomization analysis was performed to explore the association between 731 types of immune cell phenotypes-specific changes and colorectal cancer. The inverse variance weighting results indicated that a total of 31 and 28 immune cell phenotypes significantly associated with colorectal cancer in two different datasets, respectively. The primary results of inverse variance weighting Mendelian randomization suggested that the immune cell phenotypes BAFF-R on IgD+ CD38dim (OR = 1.033, 95%CI: 1.005-1.062) and SSC-A on monocyte (OR = 1.055, 95%CI: 1.016-1.096) served as risk factor for colorectal cancer. In addition, the meta-analysis further supports the causal link of BAFF-R on IgD+ CD38dim (pooled OR = 1.035, 95%CI: 1.013-1.059) and SSC-A on monocyte (pooled OR = 1.060, 95%CI: 1.026-1.095) with colorectal cancer. Finally, the inverse variance weighting Mendelian randomization result suggested that genetic determinants of colorectal cancer may decrease the level of HLA DR++ monocyte absolute count (OR = 0.686, 95%CI: 0.508-0.925). Our results indicated that the potential causal association of BAFF-R on IgD+ CD38dim and SSC-A on monocyte with colorectal cancer. The identified immune cells may be appealing drug targets for colorectal cancer, but lack confirmation from real clinical evidence. Further studies are needed to investigate the roles of these immune cells in colorectal cancer.
Collapse
Affiliation(s)
- Xinyue Gu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shihui Zhao
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Mingyu Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Songtao Du
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Liqiang Song
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Tianyi Xia
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Bomiao Zhang
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Fortin BM, Pfeiffer SM, Insua-Rodríguez J, Alshetaiwi H, Moshensky A, Song WA, Mahieu AL, Chun SK, Lewis AN, Hsu A, Adam I, Eng OS, Pannunzio NR, Seldin MM, Marazzi I, Marangoni F, Lawson DA, Kessenbrock K, Masri S. Circadian control of tumor immunosuppression affects efficacy of immune checkpoint blockade. Nat Immunol 2024; 25:1257-1269. [PMID: 38806707 PMCID: PMC11374317 DOI: 10.1038/s41590-024-01859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/29/2024] [Indexed: 05/30/2024]
Abstract
The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Bridget M Fortin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Shannon M Pfeiffer
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Jacob Insua-Rodríguez
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Pathology, University of Hail, Hail, Saudi Arabia
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Alexander Moshensky
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Wei A Song
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Alisa L Mahieu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Sung Kook Chun
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Amber N Lewis
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Alex Hsu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Isam Adam
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Oliver S Eng
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Surgery, Division of Surgical Oncology, University of California Irvine, Orange, CA, USA
| | - Nicholas R Pannunzio
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Francesco Marangoni
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA
| | - Selma Masri
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Su J, Reynier JB, Fu X, Zhong G, Jiang J, Escalante RS, Wang Y, Aparicio L, Izar B, Knowles DA, Rabadan R. Smoother: a unified and modular framework for incorporating structural dependency in spatial omics data. Genome Biol 2023; 24:291. [PMID: 38110959 PMCID: PMC10726548 DOI: 10.1186/s13059-023-03138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Spatial omics technologies can help identify spatially organized biological processes, but existing computational approaches often overlook structural dependencies in the data. Here, we introduce Smoother, a unified framework that integrates positional information into non-spatial models via modular priors and losses. In simulated and real datasets, Smoother enables accurate data imputation, cell-type deconvolution, and dimensionality reduction with remarkable efficiency. In colorectal cancer, Smoother-guided deconvolution reveals plasma cell and fibroblast subtype localizations linked to tumor microenvironment restructuring. Additionally, joint modeling of spatial and single-cell human prostate data with Smoother allows for spatial mapping of reference populations with significantly reduced ambiguity.
Collapse
Affiliation(s)
- Jiayu Su
- Program for Mathematical Genomics, Columbia University, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
- New York Genome Center, New York, NY, USA.
| | - Jean-Baptiste Reynier
- Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Xi Fu
- Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
| | - Guojie Zhong
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Jiahao Jiang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Yiping Wang
- Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Division of Hematology/Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Luis Aparicio
- Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Benjamin Izar
- Program for Mathematical Genomics, Columbia University, New York, NY, USA
- Division of Hematology/Oncology, Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Knowles
- Department of Systems Biology, Columbia University, New York, NY, USA
- New York Genome Center, New York, NY, USA
- Department of Computer Science, Columbia University, New York, NY, USA
| | - Raul Rabadan
- Program for Mathematical Genomics, Columbia University, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
| |
Collapse
|