1
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
2
|
Horwitz A, Levi-Carmel N, Shnaider O, Birk R. BBS genes are involved in accelerated proliferation and early differentiation of BBS-related tissues. Differentiation 2024; 135:100745. [PMID: 38215537 DOI: 10.1016/j.diff.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Bardet-Biedl syndrome (BBS) is an inherited disorder primarily ciliopathy with pleiotropic multi-systemic phenotypic involvement, including adipose, nerve, retinal, kidney, Etc. Consequently, it is characterized by obesity, cognitive impairment and retinal, kidney and cutaneous abnormalities. Initial studies, including ours have shown that BBS genes play a role in the early developmental stages of adipocytes and β-cells. However, this role in other BBS-related tissues is unknown. We investigated BBS genes involvement in the proliferation and early differentiation of different BBS cell types. The involvement of BBS genes in cellular proliferation were studied in seven in-vitro and transgenic cell models; keratinocytes (hHaCaT) and Ras-transfected keratinocytes (Ras-hHaCaT), neuronal cell lines (hSH-SY5Y and rPC-12), silenced BBS4 neural cell lines (siBbs4 hSH-SY5Y and siBbs4 rPC-12), adipocytes (m3T3L1), and ex-vivo transformed B-cells obtain from BBS4 patients, using molecular and biochemical methodologies. RashHaCaT cells showed an accelerated proliferation rate in parallel to significant reduction in the transcript levels of BBS1, 2, and 4. BBS1, 2, and 4 transcripts linked with hHaCaT cell cycle arrest (G1 phase) using both chemical (CDK4 inhibitor) and serum deprivation methodologies. Adipocyte (m3T3-L1) Bbs1, 2 and 4 transcript levels corresponded to the cell cycle phase (CDK4 inhibitor and serum deprivation). SiBBS4 hSH-SY5Y cells exhibited early cell proliferation and differentiation (wound healing assay) rates. SiBbs4 rPC-12 models exhibited significant proliferation and differentiation rate corresponding to Nestin expression levels. BBS4 patients-transformed B-cells exhibited an accelerated proliferation rate (LPS-induced methodology). In conclusions, the BBS4 gene plays a significant, similar and global role in the cellular proliferation of various BBS related tissues. These results highlight the universal role of the BBS gene in the cell cycle, and further deepen the knowledge of the mechanisms underlying the development of BBS.
Collapse
Affiliation(s)
- Avital Horwitz
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | | | - Olga Shnaider
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel.
| |
Collapse
|
3
|
Freke GM, Martins T, Davies RJ, Beyer T, Seda M, Peskett E, Haq N, Prasai A, Otto G, Jeyabalan Srikaran J, Hernandez V, Diwan GD, Russell RB, Ueffing M, Huranova M, Boldt K, Beales PL, Jenkins D. De-Suppression of Mesenchymal Cell Identities and Variable Phenotypic Outcomes Associated with Knockout of Bbs1. Cells 2023; 12:2662. [PMID: 37998397 PMCID: PMC10670506 DOI: 10.3390/cells12222662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is an archetypal ciliopathy caused by dysfunction of primary cilia. BBS affects multiple tissues, including the kidney, eye and hypothalamic satiety response. Understanding pan-tissue mechanisms of pathogenesis versus those which are tissue-specific, as well as gauging their associated inter-individual variation owing to genetic background and stochastic processes, is of paramount importance in syndromology. The BBSome is a membrane-trafficking and intraflagellar transport (IFT) adaptor protein complex formed by eight BBS proteins, including BBS1, which is the most commonly mutated gene in BBS. To investigate disease pathogenesis, we generated a series of clonal renal collecting duct IMCD3 cell lines carrying defined biallelic nonsense or frameshift mutations in Bbs1, as well as a panel of matching wild-type CRISPR control clones. Using a phenotypic screen and an unbiased multi-omics approach, we note significant clonal variability for all assays, emphasising the importance of analysing panels of genetically defined clones. Our results suggest that BBS1 is required for the suppression of mesenchymal cell identities as the IMCD3 cell passage number increases. This was associated with a failure to express epithelial cell markers and tight junction formation, which was variable amongst clones. Transcriptomic analysis of hypothalamic preparations from BBS mutant mice, as well as BBS patient fibroblasts, suggested that dysregulation of epithelial-to-mesenchymal transition (EMT) genes is a general predisposing feature of BBS across tissues. Collectively, this work suggests that the dynamic stability of the BBSome is essential for the suppression of mesenchymal cell identities as epithelial cells differentiate.
Collapse
Affiliation(s)
- Grace Mercedes Freke
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Tiago Martins
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Rosalind Jane Davies
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Tina Beyer
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (T.B.); (M.U.); (K.B.)
| | - Marian Seda
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Emma Peskett
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Naila Haq
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Avishek Prasai
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic (M.H.)
| | - Georg Otto
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Jeshmi Jeyabalan Srikaran
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Victor Hernandez
- Life Sciences Department, CHMLS, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK;
| | - Gaurav D. Diwan
- BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; (G.D.D.); (R.B.R.)
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Robert B. Russell
- BioQuant, University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany; (G.D.D.); (R.B.R.)
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (T.B.); (M.U.); (K.B.)
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic (M.H.)
| | - Karsten Boldt
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (T.B.); (M.U.); (K.B.)
| | - Philip L. Beales
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| | - Dagan Jenkins
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK; (G.M.F.); (T.M.); (M.S.); (E.P.); (N.H.); (G.O.); (J.J.S.); (P.L.B.)
| |
Collapse
|
4
|
Tian X, Zhao H, Zhou J. Organization, functions, and mechanisms of the BBSome in development, ciliopathies, and beyond. eLife 2023; 12:e87623. [PMID: 37466224 DOI: 10.7554/elife.87623] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The BBSome is an octameric protein complex that regulates ciliary transport and signaling. Mutations in BBSome subunits are closely associated with ciliary defects and lead to ciliopathies, notably Bardet-Biedl syndrome. Over the past few years, there has been significant progress in elucidating the molecular organization and functions of the BBSome complex. An improved understanding of BBSome-mediated biological events and molecular mechanisms is expected to help advance the development of diagnostic and therapeutic approaches for BBSome-related diseases. Here, we review the current literature on the structural assembly, transport regulation, and molecular functions of the BBSome, emphasizing its roles in cilium-related processes. We also provide perspectives on the pathological role of the BBSome in ciliopathies as well as how these can be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|