1
|
Park H, Kim SH, Lee KA. Protective effects of Lactobacillus plantarum strain against protein malnutrition-induced muscle atrophy and bone loss in juvenile mice. PLoS One 2025; 20:e0317197. [PMID: 39820793 PMCID: PMC11737667 DOI: 10.1371/journal.pone.0317197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
Early-life malnutrition adversely affects nearly all organ systems, resulting in multiple physiological adaptations, including growth restriction and muscle and bone loss. Although there is growing evidence that probiotics effectively improve systemic growth under malnourished conditions in different animal models, our knowledge of the beneficial effects of probiotics on various organs is limited. Here, we show that Lactobacillus plantarum strain WJL (LpWJL) can mitigate skeletal muscle and bone loss in protein-malnourished juvenile mice. Mice on prenatal day 21 were fed a protein-malnourished (P-MAL) diet with or without LpWJL supplementation for six weeks. Compared to mice on the P-MAL diet alone, LpWJL supplementation significantly increased muscle mass and size, resulting in enhanced muscle strength and endurance capacity. Furthermore, LpWJL supplementation induced the expression of the key growth factor IGF-1 while decreasing muscle atrophy markers such as Atrogin-1 and MuRF-1, indicating potential mechanisms by which protein malnutrition-induced muscle wasting is counteracted. Additionally, LpWJL supplementation alleviated the reduction in cortical bone thickness and the deterioration of trabecular bone microstructure in the femur. Taken together, these results indicate that LpWJL can protect against skeletal muscle atrophy and compromised bone microarchitecture caused by protein malnutrition, providing novel insights into the potential therapeutic applications of probiotics for treating malnutrition-related disorders.
Collapse
Affiliation(s)
- Hyerim Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sung-Hee Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyung-Ah Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Chandra F, Hsiao EY. FAAHcilitating recovery in malnourished kids. Cell Chem Biol 2024; 31:2018-2020. [PMID: 39706166 DOI: 10.1016/j.chembiol.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024]
Abstract
The molecular underpinnings behind the diet-microbiome-host health relationship are largely undescribed. In a recent issue of Science, Cheng et al.1 uncovered one piece of the puzzle by describing a novel fatty acid amide hydrolase (FAAH) derived from a Faecalibacterium prausnitzii strain that correlated with improved malnutrition recovery. This emphasized the microbiome's role in supporting recovery from malnutrition.
Collapse
Affiliation(s)
- Franciscus Chandra
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Elaine Y Hsiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Goodman-Luskin Microbiome Center, Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
4
|
Doolin ML, Dearing MD. Differential Effects of Two Common Antiparasitics on Microbiota Resilience. J Infect Dis 2024; 229:908-917. [PMID: 38036425 DOI: 10.1093/infdis/jiad547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Parasitic infections challenge vertebrate health worldwide, and off-target effects of antiparasitic treatments may be an additional obstacle to recovery. However, there have been few investigations of the effects of antiparasitics on the gut microbiome in the absence of parasites. METHODS We investigated whether two common antiparasitics-albendazole (ALB) and metronidazole (MTZ)-significantly alter the gut microbiome of parasite-free mice. We treated mice with ALB or MTZ daily for 7 days and sampled the fecal microbiota immediately before and after treatment and again after a two-week recovery period. RESULTS ALB did not immediately change the gut microbiota, while MTZ decreased microbial richness by 8.5% and significantly changed community structure during treatment. The structural changes caused by MTZ included depletion of the beneficial family Lachnospiraceae, and predictive metagenomic analysis revealed that these losses likely depressed microbiome metabolic function. Separately, we compared the fecal microbiotas of treatment groups after recovery, and there were minor differences in community structure between the ALB, MTZ, and sham-treated control groups. CONCLUSIONS These results suggest that a healthy microbiome is resilient after MTZ-induced depletions of beneficial gut microbes, and ALB may cause slight, latent shifts in the microbiota but does not deplete healthy gut microbiota diversity.
Collapse
Affiliation(s)
- Margaret L Doolin
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
5
|
Wheeler AE, Stoeger V, Owens RM. Lab-on-chip technologies for exploring the gut-immune axis in metabolic disease. LAB ON A CHIP 2024; 24:1266-1292. [PMID: 38226866 DOI: 10.1039/d3lc00877k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The continued rise in metabolic diseases such as obesity and type 2 diabetes mellitus poses a global health burden, necessitating further research into factors implicated in the onset and progression of these diseases. Recently, the gut-immune axis, with diet as a main regulator, has been identified as a possible role player in their development. Translation of conventional 2D in vitro and animal models is however limited, while human studies are expensive and preclude individual mechanisms from being investigated. Lab-on-chip technology therefore offers an attractive new avenue to study gut-immune interactions. This review provides an overview of the influence of diet on gut-immune interactions in metabolic diseases and a critical analysis of the current state of lab-on-chip technology to study this axis. While there has been progress in the development of "immuno-competent" intestinal lab-on-chip models, with studies showing the ability of the technology to provide mechanical cues, support longer-term co-culture of microbiota and maintain in vivo-like oxygen gradients, platforms which combine all three and include intestinal and immune cells are still lacking. Further, immune cell types and inclusion of microenvironment conditions which enable in vivo-like immune cell dynamics as well as host-microbiome interactions are limited. Future model development should focus on combining these conditions to create an environment capable of hosting more complex microbiota and immune cells to allow further study into the effects of diet and related metabolites on the gut-immune ecosystem and their role in the prevention and development of metabolic diseases in humans.
Collapse
Affiliation(s)
- Alexandra E Wheeler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Verena Stoeger
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, UK.
| |
Collapse
|
6
|
Holani R, Littlejohn PT, Edwards K, Petersen C, Moon KM, Stacey RG, Bozorgmehr T, Gerbec ZJ, Serapio-Palacios A, Krekhno Z, Donald K, Foster LJ, Turvey SE, Finlay BB. A Murine Model of Maternal Micronutrient Deficiencies and Gut Inflammatory Host-microbe Interactions in the Offspring. Cell Mol Gastroenterol Hepatol 2024; 17:827-852. [PMID: 38307490 PMCID: PMC10973814 DOI: 10.1016/j.jcmgh.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND & AIMS Micronutrient deficiency (MND) (ie, lack of vitamins and minerals) during pregnancy is a major public health concern. Historically, studies have considered micronutrients in isolation; however, MNDs rarely occur alone. The impact of co-occurring MNDs on public health, mainly in shaping mucosal colonization by pathobionts from the Enterobacteriaceae family, remains undetermined due to lack of relevant animal models. METHODS To establish a maternal murine model of multiple MND (MMND), we customized a diet deficient in vitamins (A, B12, and B9) and minerals (iron and zinc) that most commonly affect children and women of reproductive age. Thereafter, mucosal adherence by Enterobacteriaceae, the associated inflammatory markers, and proteomic profile of intestines were determined in the offspring of MMND mothers (hereafter, low micronutrient [LM] pups) via bacterial plating, flow cytometry, and mass spectrometry, respectively. For human validation, Enterobacteriaceae abundance, assessed via 16s sequencing of 3-month-old infant fecal samples (n = 100), was correlated with micronutrient metabolites using Spearman's correlation in meconium of children from the CHILD birth cohort. RESULTS We developed an MMND model and reported an increase in colonic abundance of Enterobacteriaceae in LM pups at weaning. Findings from CHILD cohort confirmed a negative correlation between Enterobacteriaceae and micronutrient availability. Furthermore, pro-inflammatory cytokines and increased infiltration of lymphocyte antigen 6 complex high monocytes and M1-like macrophages were evident in the colons of LM pups. Mechanistically, mitochondrial dysfunction marked by reduced expression of nicotinamide adenine dinucleotide (NAD)H dehydrogenase and increased expression of NAD phosphate oxidase (Nox) 1 contributed to the Enterobacteriaceae bloom. CONCLUSION This study establishes an early life MMND link to intestinal pathobiont colonization and mucosal inflammation via damaged mitochondria in the offspring.
Collapse
Affiliation(s)
- Ravi Holani
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paula T Littlejohn
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karlie Edwards
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Charisse Petersen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada; British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard G Stacey
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tahereh Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary J Gerbec
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Antonio Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zakhar Krekhno
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Donald
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada; Biochemistry and Molecular Biology Department, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|