1
|
Boomgarden AC, Upadhyay C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines (Basel) 2025; 13:148. [PMID: 40006695 PMCID: PMC11860913 DOI: 10.3390/vaccines13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The development of an effective HIV-1 vaccine remains a formidable challenge in biomedical research. Despite significant advancements in our understanding of HIV biology and pathogenesis, progress has been impeded by factors such as the virus's genetic diversity, high mutation rates, and its ability to establish latent reservoirs. Recent innovative approaches, including mosaic vaccines and mRNA technology to induce broadly neutralizing antibodies, have shown promise. However, the efficacy of these vaccines has been modest, with the best results achieving approximately 30% effectiveness. Ongoing research emphasizes the necessity of a multifaceted strategy to overcome these obstacles and achieve a breakthrough in HIV-1 vaccine development. This review summarizes current approaches utilized to further understand HIV-1 biology and to create a global vaccine. We discuss the impact of these approaches on vaccine development for other diseases, including COVID-19, influenza, and Zika virus. Additionally, we highlight the specific limitations faced with each approach and present the methods researchers employ to overcome these challenges. These innovative techniques, which have demonstrated preclinical and clinical success, have advanced the field closer to the ultimate goal of developing a global HIV-1 vaccine. Leveraging these advancements will enable significant strides in combating HIV-1 and other infectious diseases, ultimately improving global health outcomes.
Collapse
Affiliation(s)
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
2
|
Reveiz M, Xu K, Lee M, Wang S, Olia AS, Harris DR, Liu K, Liu T, Schaub AJ, Stephens T, Wang Y, Zhang B, Huang R, Tsybovsky Y, Kwong PD, Rawi R. Vaccine-elicited and naturally elicited antibodies differ in their recognition of the HIV-1 fusion peptide. Front Immunol 2024; 15:1484029. [PMID: 39611147 PMCID: PMC11602501 DOI: 10.3389/fimmu.2024.1484029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Broadly neutralizing antibodies have been proposed as templates for HIV-1 vaccine design, but it has been unclear how similar vaccine-elicited antibodies are to their naturally elicited templates. To provide insight, here we compare the recognition of naturally elicited and vaccine-elicited antibodies targeting the HIV-1 fusion peptide, which comprises envelope (Env) residues 512-526, with the most common sequence being AVGIGAVFLGFLGAA. Naturally elicited antibodies bound peptides with substitutions to negatively charged amino acids at residue positions 517-520 substantially better than the most common sequence, despite these substitutions rarely appearing in HIV-1; by contrast, vaccine-elicited antibodies were less tolerant of sequence variation, with no substitution of residues 512-516 showing increased binding. Molecular dynamics analysis and cryo-EM structural analysis of the naturally elicited ACS202 antibody in complex with the HIV-1 Env trimer with an alanine 517 to glutamine substitution suggested enhanced binding to result from electrostatic interactions with positively charged antibody residues. Overall, vaccine-elicited antibodies appeared to be more fully optimized to bind the most common fusion peptide sequence, perhaps reflecting the immunization with fusion peptide of the vaccine-elicited antibodies.
Collapse
Affiliation(s)
- Mateo Reveiz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Myungjin Lee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Darcy R. Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kevin Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew J. Schaub
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tyler Stephens
- Vaccine Research Center, Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Yiran Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rick Huang
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yaroslav Tsybovsky
- Vaccine Research Center, Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Zhang P, Gorman J, Tsybovsky Y, Lu M, Liu Q, Gopan V, Singh M, Lin Y, Miao H, Seo Y, Kwon A, Olia AS, Chuang GY, Geng H, Lai YT, Zhou T, Mascola JR, Mothes W, Kwong PD, Lusso P. Design of soluble HIV-1 envelope trimers free of covalent gp120-gp41 bonds with prevalent native-like conformation. Cell Rep 2024; 43:114518. [PMID: 39028623 PMCID: PMC11459465 DOI: 10.1016/j.celrep.2024.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
Soluble HIV-1 envelope (Env) trimers may serve as effective vaccine immunogens. The widely utilized SOSIP trimers have been paramount for structural studies, but the disulfide bond they feature between gp120 and gp41 constrains intersubunit mobility and may alter antigenicity. Here, we report an alternative strategy to generate stabilized soluble Env trimers free of covalent gp120-gp41 bonds. Stabilization was achieved by introducing an intrasubunit disulfide bond between the inner and outer domains of gp120, defined as interdomain lock (IDL). Correctly folded IDL trimers displaying a native-like antigenic profile were produced for HIV-1 Envs of different clades. Importantly, the IDL design abrogated CD4 binding while not affecting recognition by potent neutralizing antibodies to the CD4-binding site. By cryoelectron microscopy, IDL trimers were shown to adopt a closed prefusion configuration, while single-molecule fluorescence resonance energy transfer documented a high prevalence of native-like conformation. Thus, IDL trimers may be promising candidates as vaccine immunogens.
Collapse
Affiliation(s)
- Peng Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maolin Lu
- Department of Cellular and Molecular Biology, School of Medicine, University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Vinay Gopan
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mamta Singh
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yin Lin
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huiyi Miao
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuna Seo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice Kwon
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; ModeX Therapeutics, 20 Riverside Road, Weston, MA 02493, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Xu J, Zhou T, McKee K, Zhang B, Liu C, Nazzari AF, Pegu A, Shen CH, Becker JE, Bender MF, Chan P, Changela A, Chaudhary R, Chen X, Einav T, Kwon YD, Lin BC, Louder MK, Merriam JS, Morano NC, O'Dell S, Olia AS, Rawi R, Roark RS, Stephens T, Teng IT, Tourtellott-Fogt E, Wang S, Yang ES, Shapiro L, Tsybovsky Y, Doria-Rose NA, Casellas R, Kwong PD. Ultrapotent Broadly Neutralizing Human-llama Bispecific Antibodies against HIV-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309268. [PMID: 38704686 PMCID: PMC11234422 DOI: 10.1002/advs.202309268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Indexed: 05/07/2024]
Abstract
Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.
Collapse
Affiliation(s)
- Jianliang Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tal Einav
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas C Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan S Roark
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Tourtellott-Fogt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rafael Casellas
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
5
|
Zhang B, Chuang GY, Biju A, Biner D, Cheng J, Wang Y, Bao S, Chao CW, Lei H, Liu T, Nazzari AF, Yang Y, Zhou T, Chen SJ, Chen X, Kong WP, Ou L, Parchment DK, Sarfo EK, SiMa H, Todd JP, Wang S, Woodward RA, Cheng C, Rawi R, Mascola JR, Kwong PD. Cholesterol reduction by immunization with a PCSK9 mimic. Cell Rep 2024; 43:114285. [PMID: 38819987 PMCID: PMC11305080 DOI: 10.1016/j.celrep.2024.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a plasma protein that controls cholesterol homeostasis. Here, we design a human PCSK9 mimic, named HIT01, with no consecutive 9-residue stretch in common with any human protein as a potential heart attack vaccine. Murine immunizations with HIT01 reduce low-density lipoprotein (LDL) and cholesterol levels by 40% and 30%, respectively. Immunization of cynomolgus macaques with HIT01-K21Q-R218E, a cleavage-resistant variant, elicits high-titer PCSK9-directed antibody responses and significantly reduces serum levels of cholesterol 2 weeks after each immunization. However, HIT01-K21Q-R218E immunizations also increase serum PCSK9 levels by up to 5-fold, likely due to PCSK9-binding antibodies altering the half-life of PCSK9. While vaccination with a PCSK9 mimic can induce antibodies that block interactions of PCSK9 with the LDL receptor, PCSK9-binding antibodies appear to alter homeostatic levels of PCSK9, thereby confounding its vaccine impact. Our results nevertheless suggest a mechanism for increasing the half-life of soluble regulatory factors by vaccination.
Collapse
Affiliation(s)
- Baoshan Zhang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Biju
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Biner
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiaxuan Cheng
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiran Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saran Bao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cara W Chao
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haotian Lei
- Research Technologies Branch, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven J Chen
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wing-Pui Kong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Ou
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danealle K Parchment
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K Sarfo
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - HaoMin SiMa
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruth A Woodward
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, MD 20892, USA; Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
6
|
Duan H, Corrigan AR, Cheng C, Biju A, Gonelli CA, Olia AS, Teng IT, Xu K, O’Dell S, Narpala S, Castro M, Serebryannyy L, Wang J, Parchment DK, Sarfo EK, van Schooten J, Todd JP, Wang S, Harris DR, Geng H, Jafari AJ, Woodward RA, Doria-Rose NA, Foulds KE, McDermott AB, van Gils MJ, Koup RA, Pierson TC, Kwong PD, Mascola JR. Long trimer-immunization interval and appropriate adjuvant reduce immune responses to the soluble HIV-1-envelope trimer base. iScience 2024; 27:108877. [PMID: 38318357 PMCID: PMC10839646 DOI: 10.1016/j.isci.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Soluble 'SOSIP'-stabilized HIV-1 envelope glycoprotein (Env) trimers elicit dominant antibody responses targeting their glycan-free base regions, potentially diminishing neutralizing responses. Previously, using a nonhuman primate model, we demonstrated that priming with fusion peptide (FP)-carrier conjugate immunogens followed by boosting with Env trimers reduced the anti-base response. Further, we demonstrated that longer immunization intervals further reduced anti-base responses and increased neutralization breadth. Here, we demonstrate that long trimer-boosting intervals, but not long FP immunization intervals, reduce the anti-base response. Additionally, we identify that FP priming before trimer immunization enhances antibody avidity to the Env trimer. We also establish that adjuvants Matrix M and Adjuplex further reduce anti-base responses and increase neutralizing titers. FP priming, long trimer-immunization interval, and an appropriate adjuvant can thus reduce anti-base antibody responses and improve Env-directed vaccine outcomes.
Collapse
Affiliation(s)
- Hongying Duan
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angela R. Corrigan
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrea Biju
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher A. Gonelli
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S. Olia
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O’Dell
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mike Castro
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Wang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danealle K. Parchment
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Edward K. Sarfo
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jelle van Schooten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam 1105AZ, the Netherlands
| | - John-Paul Todd
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R. Harris
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander J. Jafari
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - VRC Production Program
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ruth A. Woodward
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marit J. van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam 1105AZ, the Netherlands
| | - Richard A. Koup
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Theodore C. Pierson
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|