1
|
Zheng F, Tian R, Lu H, Liang X, Shafiq M, Uchida S, Chen H, Ma M. Droplet Microfluidics Powered Hydrogel Microparticles for Stem Cell-Mediated Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401400. [PMID: 38881184 DOI: 10.1002/smll.202401400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Indexed: 06/18/2024]
Abstract
Stem cell-related therapeutic technologies have garnered significant attention of the research community for their multi-faceted applications. To promote the therapeutic effects of stem cells, the strategies for cell microencapsulation in hydrogel microparticles have been widely explored, as the hydrogel microparticles have the potential to facilitate oxygen diffusion and nutrient transport alongside their ability to promote crucial cell-cell and cell-matrix interactions. Despite their significant promise, there is an acute shortage of automated, standardized, and reproducible platforms to further stem cell-related research. Microfluidics offers an intriguing platform to produce stem cell-laden hydrogel microparticles (SCHMs) owing to its ability to manipulate the fluids at the micrometer scale as well as precisely control the structure and composition of microparticles. In this review, the typical biomaterials and crosslinking methods for microfluidic encapsulation of stem cells as well as the progress in droplet-based microfluidics for the fabrication of SCHMs are outlined. Moreover, the important biomedical applications of SCHMs are highlighted, including regenerative medicine, tissue engineering, scale-up production of stem cells, and microenvironmental simulation for fundamental cell studies. Overall, microfluidics holds tremendous potential for enabling the production of diverse hydrogel microparticles and is worthy for various stem cell-related biomedical applications.
Collapse
Affiliation(s)
- Fangqiao Zheng
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Ruizhi Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxu Lu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Liang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
| | - Muhammad Shafiq
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Hangrong Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ming Ma
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Bisht S, Kanwal S, Gnanamangai BM, Singh S, Mansi DB, Kumar R, Sharma M, Gupta PK. 3D-printed nanomedicines for cancer therapy. Future Sci OA 2024; 10:FSO973. [PMID: 38817393 PMCID: PMC11137762 DOI: 10.2144/fsoa-2024-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 06/01/2024] Open
Affiliation(s)
- Surbhi Bisht
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Sweta Kanwal
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | | | - Swati Singh
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Devayatbhai Baku Mansi
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Namakkal, 637215, Tamil Nadu, India
| | - Ranvijay Kumar
- Department of Mechanical Engineering and University Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India
| | - Mayank Sharma
- Department of Pharmaceutics, SVKM's NMIMS School of Pharmacy & Technology Management, Mukesh Patel Technology Park, Shirpur, 425405, Maharashtra, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences & Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
- Centre for Development of Biomaterials, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand, India
| |
Collapse
|
3
|
Ruchika, Bhardwaj N, Yadav SK, Saneja A. Recent advances in 3D bioprinting for cancer research: From precision models to personalized therapies. Drug Discov Today 2024; 29:103924. [PMID: 38401878 DOI: 10.1016/j.drudis.2024.103924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Cancer remains one of the most devastating diseases, necessitating innovative and precise therapeutic solutions. The emergence of 3D bioprinting has revolutionized the platform of cancer therapy by offering bespoke solutions for drug screening, tumor modeling, and personalized medicine. The utilization of 3D bioprinting enables the fabrication of complex tumor models that closely mimic the in vivo microenvironment, facilitating more accurate drug testing and personalized treatment strategies. Moreover, 3D bioprinting also provides a platform for the development of implantable scaffolds as a therapeutic solution to cancer. In this review, we highlight the application of 3D bioprinting for cancer therapy along with current advancements in cancer 3D model development with recent case studies.
Collapse
Affiliation(s)
- Ruchika
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Bhardwaj
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sudesh Kumar Yadav
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|