1
|
Pei S, Huang M, Huang J, Zhu X, Wang H, Romano S, Deng X, Wang Y, Luo Y, Hao S, Xu J, Yu T, Zhu Q, Yuan J, Shen K, Liu Z, Hu G, Peng C, Luo Q, Wen Z, Dai D, Xiao Y. BFAR coordinates TGFβ signaling to modulate Th9-mediated cancer immunotherapy. J Exp Med 2021; 218:212036. [PMID: 33914044 PMCID: PMC8091105 DOI: 10.1084/jem.20202144] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 03/04/2021] [Indexed: 01/05/2023] Open
Abstract
TGFβ is essential for the generation of anti-tumor Th9 cells; on the other hand, it causes resistance against anti-tumor immunity. Despite recent progress, the underlying mechanism reconciling the double-edged effect of TGFβ signaling in Th9-mediated cancer immunotherapy remains elusive. Here, we find that TGFβ-induced down-regulation of bifunctional apoptosis regulator (BFAR) represents the key mechanism preventing the sustained activation of TGFβ signaling and thus impairing Th9 inducibility. Mechanistically, BFAR mediates K63-linked ubiquitination of TGFβR1 at K268, which is critical to activate TGFβ signaling. Thus, BFAR deficiency or K268R knock-in mutation suppresses TGFβR1 ubiquitination and Th9 differentiation, thereby inhibiting Th9-mediated cancer immunotherapy. More interestingly, BFAR-overexpressed Th9 cells exhibit promising therapeutic efficacy to curtail tumor growth and metastasis and promote the sensitivity of anti–PD-1–mediated checkpoint immunotherapy. Thus, our findings establish BFAR as a key TGFβ-regulated gene to fine-tune TGFβ signaling that causes Th9 induction insensitivity, and they highlight the translational potential of BFAR in promoting Th9-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Siyu Pei
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Zhu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples, Federico II, Naples, Italy
| | - Xiuyu Deng
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yixiao Luo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shumeng Hao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Xu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Yu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingchen Zhu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia Yuan
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiqiang Liu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Guohong Hu
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai, China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenzhen Wen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongfang Dai
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yichuan Xiao
- Chinese Academy of Sciences Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
3
|
Tamori Y, Deng WM. Tissue-Intrinsic Tumor Hotspots: Terroir for Tumorigenesis. Trends Cancer 2017; 3:259-268. [PMID: 28718438 DOI: 10.1016/j.trecan.2017.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/04/2017] [Accepted: 03/07/2017] [Indexed: 12/26/2022]
Abstract
Epithelial tissues are highly organized systems with a remarkable homeostatic ability to maintain morphology through regulation of cellular proliferation and tissue integrity. This robust self-organizing system is progressively disrupted during tumor development. Recent studies of conserved tumor-suppressor genes in Drosophila showed how protumor cells deviate from the robustly organized tissue microenvironment to take the first steps into becoming aggressive tumors. Here we review the 'tumor hotspot' hypothesis that explains how the tissue-intrinsic local microenvironment has a pivotal role in the initial stage of tumorigenesis in Drosophila epithelia and discuss comparable mechanisms in mammalian tissues.
Collapse
Affiliation(s)
- Yoichiro Tamori
- Structural Biology Center, National Institute of Genetics and Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima 411-8540, Japan.
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
5
|
Somja J, Demoulin S, Roncarati P, Herfs M, Bletard N, Delvenne P, Hubert P. Dendritic cells in Barrett's esophagus carcinogenesis: an inadequate microenvironment for antitumor immunity? THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2168-79. [PMID: 23619476 DOI: 10.1016/j.ajpath.2013.02.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/11/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
Abstract
Barrett's esophagus corresponds to the replacement of the normal esophageal squamous epithelium by a columnar epithelium through a metaplastic process. This tissue remodeling is associated with chronic gastroesophageal reflux and constitutes a premalignant lesion leading to a 30- to 60-fold increase in the risk to evolve into esophageal adenocarcinoma. The present study aimed to investigate a possible immune evasion in Barrett's esophagus favoring esophageal adenocarcinoma development. We demonstrated that myeloid and plasmacytoid dendritic cells are recruited during the esophageal metaplasia-dysplasia-carcinoma sequence, through the action of their chemoattractants, macrophage inflammatory protein 3α and chemerin. Next, we showed that, in contrast to plasmacytoid dendritic cells, myeloid dendritic cells, co-cultured with Barrett's esophagus and esophageal adenocarcinoma cell lines, display a tolerogenic phenotype. Accordingly, myeloid dendritic cells co-cultured with esophageal adenocarcinoma cell lines stimulated regulatory T cell differentiation from naïve CD4(+) T cells. In agreement with those results, we observed that both metaplastic areas and (pre)malignant lesions of the esophagus are infiltrated by regulatory T cells. In conclusion, soluble factors secreted by epithelial cells during the esophageal metaplasia-dysplasia-carcinoma sequence influence dendritic cell distribution and promote tumor progression by rendering them tolerogenic.
Collapse
Affiliation(s)
- Joan Somja
- Department of Pathology, University Hospital of Liege, Liege, Belgium
| | | | | | | | | | | | | |
Collapse
|
6
|
Herfs M, Vargas SO, Yamamoto Y, Howitt BE, Nucci MR, Hornick JL, McKeon FD, Xian W, Crum CP. A novel blueprint for 'top down' differentiation defines the cervical squamocolumnar junction during development, reproductive life, and neoplasia. J Pathol 2013; 229:460-8. [PMID: 23007879 DOI: 10.1002/path.4110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 08/17/2012] [Accepted: 09/13/2012] [Indexed: 02/05/2023]
Abstract
The cervical squamocolumnar (SC) junction is the site of a recently discovered 'embryonic' cell population that was proposed as the cell of origin for cervical cancer and its precursors. How this population participates in cervical remodelling and neoplasia is unclear. In the present study, we analysed the SC junction immunophenotype during pre- and post-natal human and mouse development and in the adult, processes of metaplastic evolution of the SC junction, microglandular change, and early cervical neoplasia. Early in life, embryonic cervical epithelial cells were seen throughout the cervix and subsequently diminished in number to become concentrated at the SC junction in the adult. In all settings, there was a repetitive scenario in which cuboidal embryonic/SC junction cells gave rise to subjacent metaplastic basal/reserve cells with a switch from the SC junction positive to negative immunophenotype. This downward or basal (rather than upward or apical) evolution from progenitor cell to metaplastic progeny was termed reverse or 'top down' differentiation. A similar pattern was noted in high-grade squamous intraepithelial lesions (HSILs), suggesting that HPV infection of the cuboidal SC junction cells initiated outgrowth of basally-oriented neoplastic progeny. The progressive loss of the embryonic/SC junction markers occurred with 'top down' differentiation during development, remodelling, and early neoplasia. Interestingly, most low-grade SILs were SC junction-negative, implying infection of metaplastic progeny rather than the original SC junction cells. This proposed model of 'top down' differentiation resolves the mystery of how SC junction cells both remodel the cervix and participate in neoplasia and provides for a second population of metaplastic progeny (including basal and reserve cells), the infection of which is paradoxically less likely to produce a biologically aggressive precursor. It also provides new targets in animal models to determine why the SC junction is uniquely susceptible to carcinogenic HPV infection.
Collapse
Affiliation(s)
- Michael Herfs
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sharkey DJ, Tremellen KP, Jasper MJ, Gemzell-Danielsson K, Robertson SA. Seminal fluid induces leukocyte recruitment and cytokine and chemokine mRNA expression in the human cervix after coitus. THE JOURNAL OF IMMUNOLOGY 2012; 188:2445-54. [PMID: 22271649 DOI: 10.4049/jimmunol.1102736] [Citation(s) in RCA: 263] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In mice, seminal fluid elicits an inflammation-like response in the female genital tract that activates immune adaptations to advance the likelihood of conception and pregnancy. In this study, we examined whether similar changes in leukocyte and cytokine parameters occur in the human cervix in response to the male partner's seminal fluid. After a period of abstinence in proven-fertile women, duplicate sets of biopsies were taken from the ectocervix in the periovulatory period and again 48 h later, 12 h after unprotected vaginal coitus, vaginal coitus with use of a condom, or no coitus. A substantial influx of CD45(+) cells mainly comprising CD14(+) macrophages and CD1a(+) dendritic cells expressing CD11a and MHC class II was evident in both the stratified epithelium and deeper stromal tissue after coitus. CD3(+)CD8(+)CD45RO(+) T cells were also abundant and increased after coitus. Leukocyte recruitment did not occur without coitus or with condom-protected coitus. An accompanying increase in CSF2, IL6, IL8, and IL1A expression was detected by quantitative RT-PCR, and microarray analysis showed genes linked with inflammation, immune response, and related pathways are induced by seminal fluid in cervical tissues. We conclude that seminal fluid introduced at intercourse elicits expression of proinflammatory cytokines and chemokines, and a robust recruitment of macrophages, dendritic cells, and memory T cells. The leukocyte and cytokine environment induced in the cervix by seminal fluid appears competent to initiate adaptations in the female immune response that promote fertility. This response is also relevant to transmission of sexually transmitted pathogens and potentially, susceptibility to cervical metaplasia.
Collapse
Affiliation(s)
- David J Sharkey
- The Robinson Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
9
|
Caberg JHD, Hubert PM, Begon DY, Herfs MF, Roncarati PJ, Boniver JJ, Delvenne PO. Silencing of E7 oncogene restores functional E-cadherin expression in human papillomavirus 16-transformed keratinocytes. Carcinogenesis 2008; 29:1441-7. [PMID: 18566017 DOI: 10.1093/carcin/bgn145] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human papillomavirus (HPV) infection, particularly type 16, is causally associated with cancer of the uterine cervix. The persistence or progression of cervical lesions suggests that viral antigens are not adequately presented to the immune system. This hypothesis is reinforced by the observation that most squamous intra-epithelial lesions show quantitative and functional alterations of Langerhans cells (LCs). Moreover, E-cadherin-dependent adhesion of LC to keratinocytes (KCs) is defective in cervical HPV16-associated (pre)neoplastic lesions. The possible role of viral oncoprotein E7 in the reduced levels of cell surface E-cadherin was investigated by silencing HPV16 E7 by RNA interference (siRNA). This treatment induced an increased cell surface E-cadherin expression in HPV16-positive KC and a significant adhesion of LC to these squamous cells. The E-cadherin re-expression following HPV16 E7 silencing was associated with increased detection levels of retinoblastoma protein and the activating protein (AP)-2alpha transcription factor. These data suggest that HPV16 E7-induced alterations of LC/KC adhesion may play a role in the defective immune response during cervical carcinogenesis.
Collapse
Affiliation(s)
- Jean-Hubert D Caberg
- Department of Pathology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, B23, University of Liege, Centre Hospitalier Universitaire Sart Tilman, 4000 Liege, Belgium.
| | | | | | | | | | | | | |
Collapse
|
10
|
Henkens R, Delvenne P, Arafa M, Moutschen M, Zeddou M, Tautz L, Boniver J, Mustelin T, Rahmouni S. Cervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR. BMC Cancer 2008; 8:147. [PMID: 18505570 PMCID: PMC2413255 DOI: 10.1186/1471-2407-8-147] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 05/27/2008] [Indexed: 11/15/2022] Open
Abstract
Background The 21-kDa Vaccinia virus VH1-related (VHR) dual-specific protein phosphatase (encoded by the DUSP3 gene) plays a critical role in cell cycle progression and is itself regulated during the cell cycle. We have previously demonstrated using RNA interference that cells lacking VHR arrest in the G1 and G2 phases of the cell cycle and show signs of beginning of cell senescence. Methods In this report, we evaluated successfully the expression levels of VHR protein in 62 hysterectomy or conization specimens showing the various (pre) neoplastic cervical epithelial lesions and 35 additional cases of hysterectomy performed for non-cervical pathologies, from patients under 50 years of age. We used a tissue microarray and IHC technique to evaluate the expression of the VHR phosphatase. Immunofluorescence staining under confocal microscopy, Western blotting and RT-PCR methods were used to investigate the localization and expression levels of VHR. Results We report that VHR is upregulated in (pre) neoplastic lesions (squamous intraepithelial lesions; SILs) of the uterine cervix mainly in high grade SIL (H-SIL) compared to normal exocervix. In the invasive cancer, VHR is also highly expressed with nuclear localization in the majority of cells compared to normal tissue where VHR is always in the cytoplasm. We also report that this phosphatase is highly expressed in several cervix cancer cell lines such as HeLa, SiHa, CaSki, C33 and HT3 compared to primary keratinocytes. The immunofluorescence technique under confocal microscopy shows that VHR has a cytoplasmic localization in primary keratinocytes, while it localizes in both cytoplasm and nucleus of the cancer cell lines investigated. We report that the up-regulation of this phosphatase is mainly due to its post-translational stabilization in the cancer cell lines compared to primary keratinocytes rather than increases in the transcription of DUSP3 locus. Conclusion These results together suggest that VHR can be considered as a new marker for cancer progression in cervix carcinoma and potential new target for anticancer therapy.
Collapse
Affiliation(s)
- Rachel Henkens
- Immunology and Infectious Diseases Unit, GIGA-R, Liège University, Liège, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Herfs M, Hubert P, Kholod N, Caberg JH, Gilles C, Berx G, Savagner P, Boniver J, Delvenne P. Transforming growth factor-beta1-mediated Slug and Snail transcription factor up-regulation reduces the density of Langerhans cells in epithelial metaplasia by affecting E-cadherin expression. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1391-402. [PMID: 18385519 DOI: 10.2353/ajpath.2008.071004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epithelial metaplasia (EpM) is an acquired tissue abnormality resulting from the transformation of epithelium into another tissue with a different structure and function. This adaptative process is associated with an increased frequency of (pre)cancerous lesions. We propose that EpM is involved in cancer development by altering the expression of adhesion molecules important for cell-mediated antitumor immunity. Langerhans cells (LCs) are intraepithelial dendritic cells that initiate immune responses against viral or tumor antigens on both skin and mucosal surfaces. In the present study, we showed by immunohistology that the density of CD1a(+) LCs is reduced in EpM of the uterine cervix compared with native squamous epithelium and that the low number of LCs observed in EpM correlates with the down-regulation of cell-surface E-cadherin. We also demonstrated that transforming growth factor-beta1 is not only overexpressed in metaplastic tissues but also reduces E-cadherin expression in keratinocytes in vitro by inducing the promoter activity of Slug and Snail transcription factors. Finally, we showed that in vitro-generated LCs adhere poorly to keratinocytes transfected with either Slug or Snail DNA. These data suggest that transforming growth factor-beta1 indirectly reduces antigen-presenting cell density in EpM by affecting E-cadherin expression, which might explain the increased susceptibility of abnormal tissue differentiation to the development of cancer by the establishment of local immunodeficiency responsible for EpM tumorigenesis.
Collapse
Affiliation(s)
- Michael Herfs
- Department of Pathology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-Cancer), University of Liege, 4000 Liege, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|