1
|
Hamad MN, Mohamed FI, Osman MM, Jadid AA, Abdalrhman IK, Yousif AM, Alabid T, Edris AMM, Mohamed NS, Siddig EE, Ahmed A. Molecular detection of Epstein-Barr virus among Sudanese patients diagnosed with Hashimoto's thyroiditis. BMC Res Notes 2023; 16:283. [PMID: 37858193 PMCID: PMC10588233 DOI: 10.1186/s13104-023-06399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/18/2023] [Indexed: 10/21/2023] Open
Abstract
OBJECTIVES Hashimoto's thyroiditis (HT) is the most common cause of hypothyroidism. The exact mechanism initiating the development of HT is not yet clear. This study aimed to investigate the correlation between HT and the presence of Epstein-Barr virus (EBV) in a Sudanese population. RESULTS EBV-LMP1 was detected in 11.1% of HT cases, which is consistent with previous studies. Studies have reported a wide range of frequencies indicating the presence of EBV in HT, and patients with autoimmune thyroiditis have increased titers of anti-EBV antibodies in their sera compared to healthy subjects. Intrathyroidal EBV-infected B cells may be responsible for the increased risk of development of B-cell lymphoma in the thyroid gland in patients with autoimmune thyroiditis. Our study suggests that regular follow-up is necessary for patients diagnosed with HT and are positive for EBV, as antiviral therapy is not applicable due to the risk of thyroid dysfunction. The study suggests an association between EBV and HT, but causation cannot be determined. The study also highlights the need for further research to determine the viral role and correlate it with the severity and progression of HT.
Collapse
Affiliation(s)
- Marowa N Hamad
- Department of Hematology and immunology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Fuodat I Mohamed
- Department of Hematology and immunology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mayada M Osman
- Department of Hematology and immunology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Ahlam A Jadid
- Department of Hematology and immunology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Ibtihal K Abdalrhman
- Department of Hematology and immunology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Alaa M Yousif
- Molecular Biology Unit, Sirius Training and Research Centre, Khartoum, Sudan
| | - Tyseer Alabid
- Department of Hematology and immunology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Ali Mahmoud Mohammed Edris
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
- Department of Histopathology and Cytology, Faculty of Applied Medical Sciences, University of Bisha, Bisha, Kingdom of Saudi Arabia
| | - Nouh S Mohamed
- Molecular Biology Unit, Sirius Training and Research Centre, Khartoum, Sudan.
| | - Emmanuel Edwar Siddig
- Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, 11111, Sudan
- Institute of Endemic Diseases, University of Khartoum, Khartoum, 11111, Sudan
| | - Ayman Ahmed
- Institute of Endemic Diseases, University of Khartoum, Khartoum, 11111, Sudan.
- Swiss Tropical and Public Health Institute (Swiss TPH), 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, CH 4001, Basel, Switzerland.
| |
Collapse
|
2
|
Absence of Epstein-Barr virus DNA in anti-citrullinated protein antibody-expressing B cells of patients with rheumatoid arthritis. Arthritis Res Ther 2022; 24:230. [PMID: 36229887 PMCID: PMC9559001 DOI: 10.1186/s13075-022-02919-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/02/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Rheumatoid arthritis (RA) is characterized by the presence of disease-specific autoreactive B cell responses, in particular those generating anti-citrullinated protein antibodies (ACPA). For many years, Epstein-Barr virus (EBV) has been implicated in disease pathogenesis, possibly by facilitating the development and persistence of autoreactive B cells. To test this hypothesis, the presence of EBV episomes in ACPA-expressing B cells was analyzed. Methods ACPA-expressing B cells derived from peripheral blood (PB) of seven EBV-seropositive RA patients, and synovial fluid (SF) of one additional EBV-seropositive RA patient, were isolated by flow cytometry. PB cells were expanded for 11–12 days, after which supernatant was harvested and analyzed for cyclic citrullinated-peptide (CCP)2 reactivity. SF cells were isolated directly in a lysis buffer. DNA was isolated and qPCR reactions were performed to determine the EBV status of the cells. EBV-immortalized B cell lymphoblastoid-cell lines (EBV blasts) served as standardized controls. Results Two hundred ninety-six PB and 60 SF ACPA-expressing B cells were isolated and divided over 16 and 3 pools containing 10–20 cells, respectively. Supernatants of all 16 cultured PB pools contained CCP2-Ig. DNA of all pools was used for qPCR analysis. While EBV-blast analysis showed sensitivity to detect EBV DNA in single B cells, no EBV DNA was detected in any of the ACPA-expressing B cell pools. Conclusion ACPA-expressing B cells are not enriched for EBV-DNA-containing clones. These results do not support the hypothesis that EBV infection of autoreactive B cells causes or maintains autoreactive B cell populations in RA. Instead, other mechanisms might explain the association between positive EBV serology and RA. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02919-2.
Collapse
|
3
|
Carnero Contentti E, Correale J. Association between infections, the microbiome, vaccination, and neuromyelitis optica spectrum disorder. Mult Scler 2022; 29:492-501. [PMID: 35903896 DOI: 10.1177/13524585221113272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a devastating antibody-mediated condition of the central nervous system. As in other autoimmune diseases, there is considerable evidence to suggest that NMOSD arises from complex interactions between genetic susceptibility and environmental factors. However, whether factors like aquaporin-4-Antibody production initiate NMOSD attacks, currently remains unclear, and requires further investigation. Infectious diseases have also been proposed as possible environmental factors associated with NMOSD onset or relapses, some of which are more common in Asia and Latin America than in Europe and North America, in parallel with the higher incidence of NMOSD in these geographic locations. In this review, we examine current evidence on specific infections and vaccines associated with NMOSD onset and/or attacks, as well as the most recent data on gut microbiome composition and SARS-CoV-2 infection in NMOSD patients.
Collapse
|
4
|
Ruprecht K. The role of Epstein-Barr virus in the etiology of multiple sclerosis: a current review. Expert Rev Clin Immunol 2020; 16:1143-1157. [PMID: 33152255 DOI: 10.1080/1744666x.2021.1847642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system. While its exact etiology is unknown, it is generally believed that MS is caused by environmental triggers in genetically predisposed individuals. Strong and consistent evidence suggests a key role of Epstein-Barr virus (EBV), a B lymphotropic human gammaherpesvirus, in the etiology of MS. Areas covered: This review summarizes recent developments in the field of EBV and MS with a focus on potential mechanisms underlying the role of EBV in MS. PubMed was searched for the terms 'Epstein-Barr virus' and 'multiple sclerosis'. Expert opinion: The current evidence is compatible with the working hypothesis that MS is a rare complication of EBV infection. Under the premise of a causative role of EBV in MS, it needs to be postulated that EBV causes a specific, and likely persistent, change(s) that is necessarily required for the development of MS. However, although progress has been made, the nature of that change and thus the precise mechanism explaining the role of EBV in MS remain elusive. The mechanism of EBV in MS therefore is a pressing question, whose clarification may substantially advance the pathophysiological understanding, rational therapies, and prevention of MS.
Collapse
Affiliation(s)
- Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
| |
Collapse
|
5
|
Sakkas LI, Daoussis D, Liossis SN, Bogdanos DP. The Infectious Basis of ACPA-Positive Rheumatoid Arthritis. Front Microbiol 2017; 8:1853. [PMID: 29033912 PMCID: PMC5627006 DOI: 10.3389/fmicb.2017.01853] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is associated with HLA-DRB1 shared epitope (HLA-DRB1SE) and anti-citrullinated protein autoantibodies (ACPAs). ACPAs precedes the onset of clinical and subclinical RA. There are strong data for three infectious agents as autoimmunity triggers in RA, namely Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans causes of periodontal disease (PD), and Epstein-Barr virus (EBV). P. gingivalis expresses arginine gingipains, that cleave proteins at the arginine residues, and peptidyl arginine deiminase (PPAD), which citrullinates arginine residues of proteins, thus forming neoantigens that lead to ACPA production. Peripheral blood plasmablasts from ACPA+RA patients produce ACPAs the majority of which react against P. gingivalis. A. actinocycetemcomitans produces leukotoxin A, a toxin that forms pores in the neutrophil membranes and leads to citrullination and release of citrullinated autoantigens in the gums. EBV can infect B cells and epithelial cells and resides as latent infection in resting B cells. Abs against citrullinated peptides derived from EBV nuclear antigen appear years before RA and cross-react with human citrullinated fibrin. Citrullinated proteins are potential arthritogenic autoantigens in RA. The conversion of arginine to citrulline increases the peptide binding affinity to HLA-DRB1SE. Also, citrullinated fibrinogen induces arthritis in HLA-DRB1*0401 transgenic mice, and transfer of their splenic T cells causes arthritis to recipient mice.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios Daoussis
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras, Greece
| | - Stamatis-Nick Liossis
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Patras, Patras, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
6
|
Increased expression of Toll-like receptors 7 and 9 in myasthenia gravis thymus characterized by active Epstein-Barr virus infection. Immunobiology 2015; 221:516-27. [PMID: 26723518 DOI: 10.1016/j.imbio.2015.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022]
Abstract
Considerable data implicate the thymus as the main site of autosensitization to the acetylcholine receptor in myasthenia gravis (MG), a B-cell-mediated autoimmune disease affecting the neuromuscular junction. We recently demonstrated an active Epstein-Barr virus (EBV) infection in the thymus of MG patients, suggesting that EBV might contribute to the onset or maintenance of the autoimmune response within MG thymus, because of its ability to activate and immortalize autoreactive B cells. EBV has been reported to elicit and modulate Toll-like receptor (TLR) 7- and TLR9-mediated innate immune responses, which are known to favor B-cell dysfunction and autoimmunity. Aim of this study was to investigate whether EBV infection is associated with altered expression of TLR7 and TLR9 in MG thymus. By real-time PCR, we found that TLR7 and TLR9 mRNA levels were significantly higher in EBV-positive MG compared to EBV-negative normal thymuses. By confocal microscopy, high expression levels of TLR7 and TLR9 proteins were observed in B cells and plasma cells of MG thymic germinal centers (GCs) and lymphoid infiltrates, where the two receptors co-localized with EBV antigens. An increased frequency of Ki67-positive proliferating B cells was found in MG thymuses, where we also detected proliferating cells expressing TLR7, TLR9 and EBV antigens, thus supporting the idea that EBV-associated TLR7/9 signaling may promote abnormal B-cell activation and proliferation. Along with B cells and plasma cells, thymic epithelium, plasmacytoid dendritic cells and macrophages exhibited enhanced TLR7 and TLR9 expression in MG thymus; TLR7 was also increased in thymic myeloid dendritic cells and its transcriptional levels positively correlated with those of interferon (IFN)-β. We suggested that TLR7/9 signaling may be involved in antiviral type I IFN production and long-term inflammation in EBV-infected MG thymuses. Our overall findings indicate that EBV-driven TLR7- and TLR9-mediated innate immune responses may participate in the intra-thymic pathogenesis of MG.
Collapse
|
7
|
Abstract
Latent Epstein–Barr virus (EBV) infection has a substantial role in causing many human disorders. The persistence of these viral genomes in all malignant cells, yet with the expression of limited latent genes, is consistent with the notion that EBV latent genes are important for malignant cell growth. While the EBV-encoded nuclear antigen-1 (EBNA-1) and latent membrane protein-2A (LMP-2A) are critical, the EBNA-leader proteins, EBNA-2, EBNA-3A, EBNA-3C and LMP-1, are individually essential for in vitro transformation of primary B cells to lymphoblastoid cell lines. EBV-encoded RNAs and EBNA-3Bs are dispensable. In this review, the roles of EBV latent genes are summarized.
Collapse
Affiliation(s)
- Myung-Soo Kang
- 1] Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea [2] Samsung Biomedical Research Institute (SBRI), Samsung Medical Center, Sungkyunkwan University, Seoul, Korea
| | - Elliott Kieff
- Department of Medicine, Brigham and Women's Hospital, Program in Virology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Abstract
Persistent infection by EBV is explained by the germinal center model (GCM) which provides a satisfying and currently the only explanation for EBVs disparate biology. Since the GCM touches on every aspect of the virus, this chapter will serve as an introduction to the subsequent chapters. EBV is B lymphotropic, and its biology closely follows that of normal mature B lymphocytes. The virus persists quiescently in resting memory B cells for the lifetime of the host in a non-pathogenic state that is also invisible to the immune response. To access this compartment, the virus infects naïve B cells in the lymphoepithelium of the tonsils and activates these cells using the growth transcription program. These cells migrate to the GC where they switch to a more limited transcription program, the default program, which helps rescue them into the memory compartment where the virus persists. For egress, the infected memory cells return to the lymphoepithelium where they occasionally differentiate into plasma cells activating viral replication. The released virus can either infect more naïve B cells or be amplified in the epithelium for shedding. This cycle of infection and the quiescent state in memory B cells allow for lifetime persistence at a very low level that is remarkably stable over time. Mathematically, this is a stable fixed point where the mechanisms regulating persistence drive the state back to equilibrium when perturbed. This is the GCM of EBV persistence. Other possible sites and mechanisms of persistence will also be discussed.
Collapse
|
9
|
Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, Rizzo F, Coccia EM, Migliorini P, Aloisi F, Pitzalis C. Epstein–Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis 2012; 72:1559-68. [DOI: 10.1136/annrheumdis-2012-202352] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Transcriptome changes induced by Epstein-Barr virus LMP1 and LMP2A in transgenic lymphocytes and lymphoma. mBio 2012; 3:mBio.00288-12. [PMID: 22991431 PMCID: PMC3448168 DOI: 10.1128/mbio.00288-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Latent membrane protein 1 (LMP1) and LMP2A affect cell growth in both epithelial cells and lymphocytes. In this study, the effects on cellular gene expression were determined by microarray analysis of transgenic mice expressing LMP1, LMP2A, or both using the immunoglobulin heavy chain promoter and enhancer. Large differential changes were detected, indicating that LMP1 and LMP2A can both potently affect host gene transcription, inducing distinct transcriptional profiles. Seventy percent of the changes detected in LMP1/2A doubly transgenic lymphocytes were also modulated by LMP1 or LMP2A alone. These common and unique expression changes indicate that the combined effects of LMP1 and LMP2A may be additive, synergistic, or inhibitory. Using significant pathway analysis, the expression changes detected in LMP1, LMP2A, and LMP1/2A transgenic B lymphocytes were predicted to commonly target cancer and inflammatory pathways. Additionally, using the correlation coefficient to calculate the regulation of known c-Rel and Stat3 transcriptional targets, both were found to be enhanced in LMP1 lymphocytes and lymphomas, and a selection of Stat3 targets was further evaluated and confirmed using quantitative reverse transcription-PCR (RT-PCR). Analyses of the effects on cell growth and viability revealed that LMP2A transgenic lymphocytes had the greatest enhanced viability in vitro; however, doubly transgenic lymphocytes (LMP1/2A) did not have enhanced survival in culture and these mice were similar to negative littermates. These findings indicate that the combined expression of LMP1 and LMP2A has potentially different biological outcomes than when the two proteins are expressed individually. The Epstein-Barr virus proteins latent membrane protein 1 (LMP1) and LMP2A have potent effects on cell growth. In transgenic mice that express these proteins in B lymphocytes, the cell growth and survival properties are also affected. LMP1 transgenic mice have increased development of lymphoma, and the LMP1 lymphocytes have increased viability in culture. LMP2A transgenic lymphocytes have altered B cell development and enhanced survival. In this study, analysis of the cellular gene expression changes in transgenic LMP1 and LMP2A lymphocytes and LMP1 lymphomas revealed that both transgenes individually and in combination affected pathways important for the development of cancer and inflammation. Importantly, the combined expression of the two proteins had unique effects on cellular expression and cell viability. This is the first study to look at the combined effects of LMP1 and LMP2A on global changes in host gene expression.
Collapse
|
11
|
Abstract
Epstein-Barr virus infection has been epidemiologically associated with the development of multiple autoimmune diseases, particularly systemic lupus erythematosus and multiple sclerosis. Currently, there is no known mechanism that can account for these associations. The germinal-center (GC) model of EBV infection and persistence proposes that EBV gains access to the memory B cell compartment via GC reactions by driving infected cells to differentiate using the virus-encoded LMP1 and LMP2a proteins, which act as functional homologues of CD40 and the B cell receptor, respectively. The ability of LMP2a, when expressed in mice, to allow escape of autoreactive B cells suggests that it could perform a similar role in infected GC B cells, permitting the survival of potentially pathogenic autoreactive B cells. To test this hypothesis, we cloned and expressed antibodies from EBV(+) and EBV(-) memory B cells present during acute infection and profiled their self- and polyreactivity. We find that EBV does persist within self- and polyreactive B cells but find no evidence that it favors the survival of pathogenic autoreactive B cells. On the contrary, EBV(+) memory B cells express lower levels of self-reactive and especially polyreactive antibodies than their uninfected counterparts do. Our work suggests that EBV has only a modest effect on the GC process, which allows it to access and persist within a subtly unique niche of the memory compartment characterized by relatively low levels of self- and polyreactivity. We suggest that this might reflect an active process where EBV and its human host have coevolved so as to minimize the virus's potential to contribute to autoimmune disease.
Collapse
|
12
|
Ryan JL, Shen YJ, Morgan DR, Thorne LB, Kenney SC, Dominguez RL, Gulley ML. Epstein-Barr virus infection is common in inflamed gastrointestinal mucosa. Dig Dis Sci 2012; 57:1887-98. [PMID: 22410851 PMCID: PMC3535492 DOI: 10.1007/s10620-012-2116-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/22/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Epstein-Barr virus (EBV) is present in the malignant epithelial cells of 10% of all gastric adenocarcinomas; however, localization of the virus in normal gastrointestinal mucosa is largely unexplored. In the present study, we measured EBV DNA and localized viral gene products in gastritis specimens (n = 89), normal gastric and colonic mucosa (n = 14), Crohn's disease (n = 9), and ulcerative colitis (n = 11) tissues. METHODS A battery of sensitive and specific quantitative polymerase chain reactions targeted six disparate regions of the EBV genome: BamH1 W, EBNA1, LMP1, LMP2, BZLF1, and EBER1. EBV infection was localized by EBV-encoded RNA (EBER) in situ hybridization and by immunohistochemical stains for viral latent proteins LMP1 and LMP2 and for viral lytic proteins BMRF1 and BZLF1. B lymphocytes were identified using CD20 immunostains. RESULTS EBV DNA was essentially undetectable in normal gastric mucosa but was present in 46% of gastritis lesions, 44% of normal colonic mucosa, 55% of Crohn's disease, and 64% of ulcerative colitis samples. Levels of EBV DNA exceeded what would be expected based on the numbers of B lymphocytes in inflamed tissues, suggesting that EBV is preferentially localized to inflammatory gastrointestinal lesions. Histochemical staining revealed EBER expression in lymphoid cells of some PCR-positive lesions. The viral lytic viral proteins, BMRF1 and BZLF1, were expressed in lymphoid cells of two ulcerative colitis tissues, both of which had relatively high viral loads by quantitative PCR. CONCLUSION EBV-infected lymphocytes are frequently present in inflamed gastric and colonic mucosa. Active viral replication in some lesions raises the possibility of virus-related perpetuation of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Julie L. Ryan
- Department of Dermatology & Radiation Oncology, University of Rochester Medical Center, Rochester, NY
| | - You-Jun Shen
- Virginia Beach General Hospital, Virginia Beach, VA
| | - Douglas R. Morgan
- Gastroenterology and Hepatology Division, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Leigh B. Thorne
- Department of Pathology and Laboratory Medicine and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Shannon C. Kenney
- Departments of Medicine and Oncology, University of Wisconsin, Madison, WI
| | - Ricardo L. Dominguez
- Department of Gastroenterology, Western Regional Hospital, Santa Rosa de Copan, Honduras
| | - Margaret L. Gulley
- Department of Pathology and Laboratory Medicine and the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
13
|
Niller HH, Wolf H, Ay E, Minarovits J. Epigenetic dysregulation of epstein-barr virus latency and development of autoimmune disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:82-102. [PMID: 21627044 DOI: 10.1007/978-1-4419-8216-2_7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epstein-Barr virus (EBV) is ahumanherpesvirus thatpersists in the memory B-cells of the majority of the world population in a latent form. Primary EBV infection is asymptomatic or causes a self-limiting disease, infectious mononucleosis. Virus latency is associated with a wide variety of neoplasms whereof some occur in immune suppressed individuals. Virus production does not occur in strict latency. The expression of latent viral oncoproteins and nontranslated RNAs is under epigenetic control via DNA methylation and histone modifications that results either in a complete silencing of the EBV genome in memory B cells, or in a cell-type dependent usage of a couple of latency promoters in tumor cells, germinal center B cells and lymphoblastoid cells (LCL, transformed by EBV in vitro). Both, latent and lytic EBV proteins elicit a strong immune response. In immune suppressed and infectious mononucleosis patients, an increased viral load can be detected in the blood. Enhanced lytic replication may result in new infection- and transformation-events and thus is a risk factor both for malignant transformation and the development of autoimmune diseases. An increased viral load or a changed presentation of a subset of lytic or latent EBV proteins that cross-react with cellular antigens may trigger pathogenic processes through molecular mimicry that result in multiple sclerosis (MS), systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA).
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology and Hygiene of the University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
14
|
Söllner J, Heinzel A, Summer G, Fechete R, Stipkovits L, Szathmary S, Mayer B. Concept and application of a computational vaccinology workflow. Immunome Res 2010; 6 Suppl 2:S7. [PMID: 21067549 PMCID: PMC2981879 DOI: 10.1186/1745-7580-6-s2-s7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The last years have seen a renaissance of the vaccine area, driven by clinical needs in infectious diseases but also chronic diseases such as cancer and autoimmune disorders. Equally important are technological improvements involving nano-scale delivery platforms as well as third generation adjuvants. In parallel immunoinformatics routines have reached essential maturity for supporting central aspects in vaccinology going beyond prediction of antigenic determinants. On this basis computational vaccinology has emerged as a discipline aimed at ab-initio rational vaccine design.Here we present a computational workflow for implementing computational vaccinology covering aspects from vaccine target identification to functional characterization and epitope selection supported by a Systems Biology assessment of central aspects in host-pathogen interaction. We exemplify the procedures for Epstein Barr Virus (EBV), a clinically relevant pathogen causing chronic infection and suspected of triggering malignancies and autoimmune disorders. RESULTS We introduce pBone/pView as a computational workflow supporting design and execution of immunoinformatics workflow modules, additionally involving aspects of results visualization, knowledge sharing and re-use. Specific elements of the workflow involve identification of vaccine targets in the realm of a Systems Biology assessment of host-pathogen interaction for identifying functionally relevant targets, as well as various methodologies for delineating B- and T-cell epitopes with particular emphasis on broad coverage of viral isolates as well as MHC alleles.Applying the workflow on EBV specifically proposes sequences from the viral proteins LMP2, EBNA2 and BALF4 as vaccine targets holding specific B- and T-cell epitopes promising broad strain and allele coverage. CONCLUSION Based on advancements in the experimental assessment of genomes, transcriptomes and proteomes for both, pathogen and (human) host, the fundaments for rational design of vaccines have been laid out. In parallel, immunoinformatics modules have been designed and successfully applied for supporting specific aspects in vaccine design. Joining these advancements, further complemented by novel vaccine formulation and delivery aspects, have paved the way for implementing computational vaccinology for rational vaccine design tackling presently unmet vaccine challenges.
Collapse
Affiliation(s)
- Johannes Söllner
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
| | - Andreas Heinzel
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
- University of Applied Sciences, Softwarepark 11, 4232 Hagenberg, Austria
| | - Georg Summer
- University of Applied Sciences, Softwarepark 11, 4232 Hagenberg, Austria
| | - Raul Fechete
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
| | | | - Susan Szathmary
- Galenbio Kft., Erdőszél köz 21, 1037 Budapest, Hungary and GalenBio, Inc., 5922 Farnsworth Ct, Carlsbad, CA 92008, USA
| | - Bernd Mayer
- emergentec biodevelopment GmbH, Rathausstrasse 5/3, 1010 Vienna, Austria
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| |
Collapse
|
15
|
Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J Neuropathol Exp Neurol 2010; 69:677-93. [PMID: 20535037 DOI: 10.1097/nen.0b013e3181e332ec] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A cardinal feature of multiple sclerosis (MS) is the persistent intrathecal synthesis of antibodies. Our previous finding that a large fraction of B cells infiltrating the MS brain are infected with Epstein-Barr virus (EBV) raises the possibility that this virus, because of its ability to establish a latent infection in B cells and interfere with their differentiation, contributes to B-cell dysregulation in MS. The aim of this study was to gain further insight into EBV latency programs and their relationship to B-cell activation in the MS brain. Immunohistochemical analysis of postmortem MS brain samples harboring large EBV deposits revealed that most B cells in white matter lesions, meninges, and ectopic B-cell follicles are CD27+ antigen-experienced cells and coexpress latent membrane protein 1 and latent membrane protein 2A, 2 EBV-encoded proteins that provide survival and maturation signals to B cells. By combining laser-capture microdissection with preamplification reverse transcription-polymerase chain reaction techniques, EBV latency transcripts (latent membrane protein 2A, EBV nuclear antigen 1) were detected in all MS brain samples analyzed. We also found that B cell-activating factor of the tumor necrosis factor family is expressed in EBV-infected B cells in acute MS lesions and ectopic B-cell follicles. These findings support a role for EBV infection in B-cell activation in the MS brain and suggest that B cell-activating factor of the tumor necrosis factor family produced by EBV-infected B cells may contribute to this process resulting in viral persistence and, possibly, disruption of B-cell tolerance.
Collapse
|
16
|
Ferrara F, Quaglia S, Caputo I, Esposito C, Lepretti M, Pastore S, Giorgi R, Martelossi S, Dal Molin G, Di Toro N, Ventura A, Not T. Anti-transglutaminase antibodies in non-coeliac children suffering from infectious diseases. Clin Exp Immunol 2009; 159:217-23. [PMID: 19912255 DOI: 10.1111/j.1365-2249.2009.04054.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Anti-transglutaminase antibodies are the diagnostic markers of coeliac disease. A role is suggested for infectious agents in the production of anti-transglutaminase antibodies. The aim was to measure positive anti-transglutaminase antibody levels in children with infectious diseases and to compare immunological and biological characteristics of the anti-transglutaminase antibodies derived from these children with that from coeliac patients. Two hundred and twenty-two children suffering from infectious diseases were enrolled prospectively along with seven biopsy-proven coeliacs. Serum samples were tested for anti-transglutaminase antibodies and anti-endomysium antibodies; positive samples were tested for coeliac-related human leucocyte antigen (HLA)-DQ2/8 and anti-viral antibodies. Purified anti-transglutaminase antibodies from the two study groups were tested for urea-dependent avidity, and their ability to induce cytoskeletal rearrangement and to modulate cell-cycle in Caco-2 cells, using phalloidin staining and bromodeoxyuridine incorporation assays, respectively. Nine of 222 children (4%) tested positive to anti-transglutaminase, one of whom also tested positive for anti-endomysium antibodies. This patient was positive for HLA-DQ2 and was diagnosed as coeliac following intestinal biopsy. Of the eight remaining children, two were positive for HLA-DQ8. Levels of anti-transglutaminase returned to normal in all subjects, despite a gluten-containing diet. Purified anti-transglutaminase of the two study groups induced actin rearrangements and cell-cycle progression. During an infectious disease, anti-transglutaminase antibodies can be produced temporarily and independently of gluten. The infection-triggered anti-transglutaminase antibodies have the same biological properties as that of the coeliacs, with the same in-vivo potential for damage.
Collapse
Affiliation(s)
- F Ferrara
- Department of Reproductive and Development Science, University of Trieste, and Children Hospital IRCCS 'Burlo Garofolo' Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cuchacovich R, Gedalia A. Pathophysiology and clinical spectrum of infections in systemic lupus erythematosus. Rheum Dis Clin North Am 2009; 35:75-93. [PMID: 19480998 DOI: 10.1016/j.rdc.2009.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Systemic lupus erythematosus (SLE) is an inflammatory and multisystemic autoimmune disorder characterized by an uncontrolled autoreactivity of B and T lymphocytes leading to the production of autoantibodies against self-directed antigens and tissue destruction. Environmental factors, such as infections, which are an important cause of morbidity and mortality, are potential triggers of the disease. This article discusses bacterial, viral, and opportunistic microorganism infections in SLE, and the role of immunosuppressive therapy and immunodeficiencies in the disease.
Collapse
Affiliation(s)
- Raquel Cuchacovich
- Section of Rheumatology, Department of Internal Medicine, Louisiana State University Health Sciences Center, 1542 Tulane Avenue, New Orleans, LA 70112, USA.
| | | |
Collapse
|
18
|
Niller HH, Wolf H, Minarovits J. Regulation and dysregulation of Epstein–Barr virus latency: Implications for the development of autoimmune diseases. Autoimmunity 2009; 41:298-328. [DOI: 10.1080/08916930802024772] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Desailloud R, Hober D. Viruses and thyroiditis: an update. Virol J 2009; 6:5. [PMID: 19138419 PMCID: PMC2654877 DOI: 10.1186/1743-422x-6-5] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/12/2009] [Indexed: 12/30/2022] Open
Abstract
Viral infections are frequently cited as a major environmental factor involved in subacute thyroiditis and autoimmune thyroid diseases This review examines the data related to the role of viruses in the development of thyroiditis. Our research has been focused on human data. We have reviewed virological data for each type of thyroiditis at different levels of evidence; epidemiological data, serological data or research on circulating viruses, direct evidence of thyroid tissue infection. Interpretation of epidemiological and serological data must be cautious as they don't prove that this pathogen is responsible for the disease. However, direct evidence of the presence of viruses or their components in the organ are available for retroviruses (HFV) and mumps in subacute thyroiditis, for retroviruses (HTLV-1, HFV, HIV and SV40) in Graves's disease and for HTLV-1, enterovirus, rubella, mumps virus, HSV, EBV and parvovirus in Hashimoto's thyroiditis. However, it remains to determine whether they are responsible for thyroid diseases or whether they are just innocent bystanders. Further studies are needed to clarify the relationship between viruses and thyroid diseases, in order to develop new strategies for prevention and/or treatment.
Collapse
Affiliation(s)
- Rachel Desailloud
- Laboratoire de Virologie/UPRES EA3610 Faculté de Médecine, Université Lille 2, CHRU Lille, Centre de Biologie/Pathologie et Parc Eurasanté, 59037 Lille, France.
| | | |
Collapse
|
20
|
Thorley-Lawson DA, Allday MJ. The curious case of the tumour virus: 50 years of Burkitt's lymphoma. Nat Rev Microbiol 2008; 6:913-24. [PMID: 19008891 DOI: 10.1038/nrmicro2015] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Burkitt's lymphoma (BL) was first described 50 years ago, and the first human tumour virus Epstein-Barr virus (EBV) was discovered in BL tumours soon after. Since then, the role of EBV in the development of BL has become more and more enigmatic. Only recently have we finally begun to understand, at the cellular and molecular levels, the complex and interesting interaction of EBV with B cells that creates a predisposition for the development of BL. Here, we discuss the intertwined histories of EBV and BL and their relationship to the cofactors in BL pathogenesis: malaria and the MYC translocation.
Collapse
Affiliation(s)
- David A Thorley-Lawson
- Department of Pathology, Jaharis Building, Tufts University School of Medicine, 150 Harrison Avenue, Boston, Massachusetts 02111, USA.
| | | |
Collapse
|
21
|
Lincoln JA, Hankiewicz K, Cook SD. Could Epstein-Barr Virus or Canine Distemper Virus Cause Multiple Sclerosis? Neurol Clin 2008; 26:699-715, viii. [DOI: 10.1016/j.ncl.2008.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Abstract
PURPOSE OF REVIEW To review the current literature and summarize the main principles found between viral infections and the subsequent production of autoantibodies. RECENT FINDINGS We concentrate on recent findings involving three viral agents, one of which is Epstein-Barr virus, which has been associated with many autoimmune diseases and is classically considered to induce systemic lupus erythematosus. As we will discuss, this occurs through molecular mimicry between Epstein-Barr virus nuclear antigen 1 and lupus-specific antigens such as Ro, La or dsDNA, through induction of Toll-like receptor hypersensitivity by Epstein-Barr virus latent membrane protein 2A or by creating immortal B and T cells by loss of apoptosis. Hepatitis B virus was found to share amino acid sequences with different autoantigens. Tissue damage and the release of intracellular components is just another example of the autoantibody production caused by this virus. Cytomegalovirus has often been controversially associated with several autoimmune diseases and, although is the least understood viral infection of the three, appears to be somewhat suspicious. SUMMARY Understanding the infectious origin of autoimmune diseases is important as we aim to identify high-risk patients and disrupt this process with vaccines or other medications, ultimately delaying or even preventing the evolution of autoimmune diseases.
Collapse
|