1
|
Reddy NR, Maachi H, Xiao Y, Simic MS, Yu W, Tonai Y, Cabanillas DA, Serrano-Wu E, Pauerstein PT, Tamaki W, Allen GM, Parent AV, Hebrok M, Lim WA. Engineering synthetic suppressor T cells that execute locally targeted immunoprotective programs. Science 2024; 386:eadl4793. [PMID: 39636990 DOI: 10.1126/science.adl4793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/22/2024] [Indexed: 12/07/2024]
Abstract
Immune homeostasis requires a balance of inflammatory and suppressive activities. To design cells potentially useful for local immune suppression, we engineered conventional CD4+ T cells with synthetic Notch (synNotch) receptors driving antigen-triggered production of anti-inflammatory payloads. Screening a diverse library of suppression programs, we observed the strongest suppression of cytotoxic T cell attack by the production of both anti-inflammatory factors (interleukin-10, transforming growth factor-β1, programmed death ligand 1) and sinks for proinflammatory cytokines (interleukin-2 receptor subunit CD25). Engineered cells with bespoke regulatory programs protected tissues from immune attack without systemic suppression. Synthetic suppressor T cells protected transplanted beta cell organoids from cytotoxic T cells. They also protected specific tissues from unwanted chimeric antigen receptor (CAR) T cell cross-reaction. Synthetic suppressor T cells are a customizable platform to potentially treat autoimmune diseases, organ rejection, and CAR T cell toxicities with spatial precision.
Collapse
Affiliation(s)
- Nishith R Reddy
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Hasna Maachi
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yini Xiao
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Milos S Simic
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Yu
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Yurie Tonai
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniela A Cabanillas
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Ella Serrano-Wu
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Philip T Pauerstein
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Whitney Tamaki
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Greg M Allen
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Audrey V Parent
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Matthias Hebrok
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Wendell A Lim
- UCSF Cell Design Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Kim WD, Sin DD. Granzyme B May Act as an Effector Molecule to Control the Inflammatory Process in COPD. COPD 2024; 21:1-11. [PMID: 38314671 DOI: 10.1080/15412555.2023.2299104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by smoking, but only a small proportion of smokers have disease severe enough to develop COPD. COPD is not always progressive. The question then arises as to what explains the different trajectories of COPD. The role of autoimmunity and regulatory T (Treg) cells in the pathogenesis of COPD is increasingly being recognized. Nine published studies on Treg cells in the lung tissue or bronchoalveolar lavage fluid have shown that smokers with COPD have fewer Treg cells than smokers without COPD or nonsmokers. Three studies showed a positive correlation between Treg cell count and FEV1%, suggesting an important role for Treg cells in COPD progression. Treg cells can regulate immunological responses via the granzyme B (GzmB) pathway. Immunohistochemical staining for GzmB in surgically resected lungs with centrilobular emphysema showed that the relationship between the amount of GzmB+ cells and FEV1% was comparable to that between Treg cell count and FEV1% in the COPD lung, suggesting that GzmB could be a functional marker for Treg cells. The volume fraction of GzmB+ cells in the small airways, the number of alveolar GzmB+ cells, and GzmB expression measured by enzyme-linked immunosorbent assay in the lung tissue of smokers were significantly correlated with FEV1%. These results suggest that the GzmB content in lung tissue may determine the progression of COPD by acting as an effector molecule to control inflammatory process. Interventions to augment GzmB-producing immunosuppressive cells in the early stages of COPD could help prevent or delay COPD progression.
Collapse
Affiliation(s)
- Won-Dong Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Don D Sin
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Liu J, Zhao Y, Zhao H. Chimeric antigen receptor T-cell therapy in autoimmune diseases. Front Immunol 2024; 15:1492552. [PMID: 39628482 PMCID: PMC11611814 DOI: 10.3389/fimmu.2024.1492552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
The administration of T cells that have been modified to carry chimeric antigen receptors (CARs) aimed at B cells has been an effective strategy in treating B cell malignancies. This breakthrough has spurred the creation of CAR T cells intended to specifically reduce or alter the faulty immune responses associated with autoimmune disorders. Early positive outcomes from clinical trials involving CAR T cells that target the B cell protein CD19 in patients suffering from autoimmune diseases driven by B cells have been reported. Additional strategies are being developed to broaden the use of CAR T cell therapy and enhance its safety in autoimmune conditions. These include employing chimeric autoantireceptors (CAAR) to specifically eliminate B cells that are reactive to autoantigens, and using regulatory T cells (Tregs) engineered to carry antigen-specific CARs for precise immune modulation. This discussion emphasizes key factors such as choosing the right target cell groups, designing CAR constructs, defining tolerable side effects, and achieving a lasting immune modification, all of which are critical for safely integrating CAR T cell therapy in treating autoimmune diseases.
Collapse
MESH Headings
- Humans
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Animals
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes, Regulatory/immunology
- B-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Autoantigens/immunology
- Antigens, CD19/immunology
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yan Zhao
- Department of Respiratory, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Wen YH, Lin YX, Zhou L, Lin C, Zhang L. The immune landscape in apical periodontitis: From mechanism to therapy. Int Endod J 2024; 57:1526-1545. [PMID: 39087849 DOI: 10.1111/iej.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
Apical periodontitis (AP) is featured by a persistent inflammatory response and alveolar bone resorption initiated by microorganisms, posing risks to both dental and systemic health. Nonsurgical endodontic treatment is the recommended treatment plan for AP with a high success rate, but in some cases, periapical lesions may persist despite standard endodontic treatment. Better comprehension of the AP inflammatory microenvironment can help develop adjunct therapies to improve the outcome of endodontic treatment. This review presents an overview of the immune landscape in AP, elucidating how microbial invasion triggers host immune activation and shapes the inflammatory microenvironment, ultimately impacting bone homeostasis. The destructive effect of excessive immune activation on periapical tissues is emphasized. This review aimed to systematically discuss the immunological basis of AP, the inflammatory bone resorption and the immune cell network in AP, thereby providing insights into potential immunotherapeutic strategies such as targeted therapy, antioxidant therapy, adoptive cell therapy and cytokine therapy to mitigate AP-associated tissue destruction.
Collapse
Affiliation(s)
- Yuan-Hao Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yu-Xiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Lin
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Jiang S, Zhu L, Xu Y, Liu Z, Cai J, Zhu T, Fan Q, Zhao Z. Subcutaneously transplanted xenogeneic protein recruits treg cells and M2 macrophages to induce browning of inguinal white adipose tissue. Endocrine 2024; 86:631-643. [PMID: 38900356 DOI: 10.1007/s12020-024-03932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE To study whether subcutaneously embedding xenogeneic protein threads or synthetic polymer absorbable threads can improve obesity phenotypes and metabolic conditions, and to further explore its underlying mechanism. METHODS Thirty-six 8-week-old ob/ob mice were randomly allocated to three groups, respectively, receiving catgut embedding, PGA thread embedding or sham treatment bilaterally to the groin. Individual parameters including weight, food intake, and core temperature are recorded and metabolism assessment, energy expenditure analysis, and PET/CT scanning are also performed at fixed timepoints. After surgical incision, the inguinal white adipose tissue was histologically examined and its expression profile was tested and compared among groups 4 weeks and 12 weeks after operation. RESULTS Catgut embedding reduced weight gain and improved metabolic status in ob/ob mice. Browning of bilateral inguinal WAT (white adipose tissue) was induced after catgut embedding, with massive infiltration of Treg cells and M2 macrophages in the tissue slices of fat pads. IL-10 and TGF-β released by Treg cells targeted macrophages and the induced M2 macrophages increased the expression of thermogenic and anti-inflammatory genes in fat. The secretion of catecholamines by polarized M2 macrophages led to the activation of β3-AR-related pathways in adipocytes and the browning of adipose tissue. CONCLUSIONS Abdominal subcutaneous catgut embedding has the potential to combat obesity through the induction of WAT browning mediated by infiltrated Treg cells and macrophages.
Collapse
Affiliation(s)
- Shenglu Jiang
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lili Zhu
- Taizhou Enze Hospital, Taizhou, China
| | - Yukun Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Zhao Liu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jialin Cai
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Tao Zhu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Qing Fan
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Zhenxiong Zhao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
| |
Collapse
|
6
|
Wang A, Wang Y, Liang R, Li B, Pan F. Improving regulatory T cell-based therapy: insights into post-translational modification regulation. J Genet Genomics 2024:S1673-8527(24)00252-2. [PMID: 39357622 DOI: 10.1016/j.jgg.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Regulatory T (Treg) cells are pivotal for maintaining immune homeostasis and play essential roles in various diseases, such as autoimmune diseases, graft-versus-host disease (GVHD), tumors, and infectious diseases. Treg cells exert suppressive function via distinct mechanisms, including inhibitory cytokines, granzyme or perforin-mediated cytolysis, metabolic disruption, and suppression of dendritic cells. Forkhead Box P3 (FOXP3), the characteristic transcription factor, is essential for Treg cell function and plasticity. Cumulative evidence has demonstrated that FOXP3 activity and Treg cell function are modulated by a variety of post-translational modifications (PTMs), including ubiquitination, acetylation, phosphorylation, methylation, glycosylation, poly(ADP-ribosyl)ation, and uncharacterized modifications. This review describes Treg cell suppressive mechanisms and summarizes the current evidence on PTM regulation of FOXP3 and Treg cell function. Understanding the regulatory role of PTMs in Treg cell plasticity and function will be helpful in designing therapeutic strategies for autoimmune diseases, GVHD, tumors, and infectious diseases.
Collapse
Affiliation(s)
- Aiting Wang
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yanwen Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Fan Pan
- Center for Cancer Immunology Research, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
7
|
Fan C, Yuan P, Yang X, Zhang W, Wang X, Xie J, He J, Chen H, Yan L, Shi Z. Metabolite, immunocyte phenotype, and lymphoma: a Mendelian randomization study. Front Immunol 2024; 15:1431261. [PMID: 39386202 PMCID: PMC11461196 DOI: 10.3389/fimmu.2024.1431261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background Recent studies have confirmed that metabolites and immunocyte phenotype may be associated with the risk of lymphoma. However, the bidirectional causality between metabolites, immunocyte phenotype, disease risk, and whether immunity is an intermediate mediator between metabolism and lymphoma causality is still unclear. Objective To elucidate the causal relationship between metabolites, immune cell phenotypes, and lymphomas, we used two-sample Mendelian randomization (MR) and two-step MR analysis. Methods Applying large-scale genome-wide association studies (GWAS) pooled data, we selected 1400 metabolites and 731 immunocyte phenotypes with eight lymphoma subtypes for two-sample bi-directional MR analysis. In addition, we used two-step MR to quantify the proportion of metabolite effects on lymphomas mediated by immunocyte phenotype. Results This study yielded a bidirectional causal relationship between 17 metabolites and lymphoma and a bidirectional causal relationship between 12 immunocyte phenotypes and lymphoma. In addition, we found causal associations between metabolites and lymphomas, three groups of which were mediated by immunocyte phenotypes. Among them, CD27 on plasmablast/plasma cell (PB/PC) was a mediator of the positive association of arginine to glutamate ratio with chronic lymphocytic leukemia, with a mediator ratio of 14.60% (95% CI=1.29-28.00%, P=3.17 × 10-2). Natural killer (NK) cells as a percentage of all lymphocytes(NK %lymphocyte) was a mediator of the negative association of X-18922(unknown metabolite) levels with diffuse large B-cell lymphoma, with a mediation proportion of -8.940% (95% CI=-0.063-(-17.800) %, P=4.84 × 10-2). CD25 on IgD- CD24- B cell was the mediator of the positive association between X-24531(unknown metabolite) levels and diffuse large B-cell lymphoma, with a mediation proportion of 13.200% (95% CI=-0.156-26.200%, P=4.73 × 10-2). Conclusion In the present study, we identified a causal relationship between metabolites and lymphoma, in which immunocyte phenotypes as mediators are involved in only a minor part. The mediators by which most metabolites affect the risk of lymphoma development remain unclear and require further exploration in the future.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Pengying Yuan
- Hospital of University of International Business and Economics, Beijing, China
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weifeng Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xingli Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Juan Xie
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jing He
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Haijing Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
8
|
Zhang C, Liu X, Gu C, Su Y, Lv J, Liu Y, Gao Y, Chen H, Xu N, Xiao J, Xu Z, Su W. Histone deacetylases facilitate Th17-cell differentiation and pathogenicity in autoimmune uveitis via CDK6/ID2 axis. J Adv Res 2024:S2090-1232(24)00313-8. [PMID: 39107200 DOI: 10.1016/j.jare.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024] Open
Abstract
INTRODUCTION Autoimmune uveitis (AU) is a prevalent ocular autoimmune disease leading to significant visual impairment. However, underlying pathogenesis of AU required to develop more efficient therapy remain unclear. METHODS We isolated peripheral blood mononuclear cells (PBMCs) from AU patients and performed single-cell RNA sequencing (scRNA-seq). Besides, experimental autoimmune uveitis (EAU) model was established and treated with histone deacetylase inhibitor (HDACi) Belinostat or vehicle. We extracted immune cells from Blank, EAU, and HDACi-treated EAU mice and used scRNA-seq, flow cytometry, siRNA, specific inhibitors, and adoptive transfer experiments to explore the role of HDACs and its downstream potential molecular mechanisms in the immune response of EAU and AU. RESULTS We found highly expressed histone deacetylases (HDACs) family in AU patients and identified it as a key factor related to CD4+ effector T cell differentiation in the pathogenesis of AU. Our further studies showed that targeted inhibition of HDACs effectively alleviated EAU, restored its Th17/Treg balance, and reduced inflammatory gene expression, especially in CD4+ T cells. Post-HDACs inhibition, Treg proportions increased with enhanced immunomodulatory effects. Importantly, HDACs exhibited a positive promoting role on Th17 cells. Based on scRNA-seq screening and application of knock-down siRNAs and specific inhibitors in vitro and vivo, we identified CDK6 as a key downstream molecule regulated by HDAC1/3/6 through acetyl-histone H3/p53/p21 axis, which is involved in Th17 pathogenicity and EAU development. Additionally, HDACs-regulated CDK6 formed a positive loop with ID2, inducing PIM1 upregulation, promoting Th17 cell differentiation and pathogenicity, and correlates with AU progression. CONCLUSION Based on the screening of clinical samples and downstream molecular functional validation experiments, we revealed a driving role for HDACs and the HDACs-regulated CDK6/ID2 axis in Th17 cell differentiation and pathogenicity in AU, proposing a promising therapeutic strategy.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| | - Chenyang Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuhan Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianjie Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yidan Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Hui Chen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nanwei Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Clinical Medicine (Eight-Year Program), West China School of Medicine, Sichuan University, Chengdu 610044, China
| | - Jing Xiao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhuping Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Wenru Su
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.
| |
Collapse
|
9
|
Zouali M. Engineered immune cells as therapeutics for autoimmune diseases. Trends Biotechnol 2024; 42:842-858. [PMID: 38368169 DOI: 10.1016/j.tibtech.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/19/2024]
Abstract
Current treatment options for autoimmune disease (AID) are essentially immunosuppressive, inhibiting the inflammatory cascade, without curing the disease. Therapeutic monoclonal antibodies (mAbs) that target B cells showed efficacy, emphasizing the importance of B lymphocytes in autoimmune pathogenesis. Treatments that eliminate more potently B cells would open a new therapeutic era for AID. Immune cells can now be bioengineered to express constructs that enable them to specifically eradicate pathogenic B lymphocytes. Engineered immune cells (EICs) have shown therapeutic promise in both experimental models and in clinical trials in AID. Next-generation platforms are under development to optimize their specificity and improve safety. The profound and durable B cell depletion achieved reinforces the view that this biotherapeutic option holds promise for treating AID.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
11
|
Honing DY, Luiten RM, Matos TR. Regulatory T Cell Dysfunction in Autoimmune Diseases. Int J Mol Sci 2024; 25:7171. [PMID: 39000278 PMCID: PMC11241405 DOI: 10.3390/ijms25137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs), a suppressive subpopulation of T cells, are potent mediators of peripheral tolerance, responsible for immune homeostasis. Many autoimmune diseases exhibit disruptions in Treg function or quantity, resulting in an imbalance between protective and pathogenic immune cells. Selective expansion or manipulation of Tregs is a promising therapeutic approach for autoimmune diseases. However, the extensive diversity of Treg subpopulations and the multiple approaches used for Treg identification leads to high complexity, making it difficult to develop a successful treatment capable of modulating Tregs. In this review, we describe the suppressive mechanisms, subpopulations, classification, and identification methodology for Tregs, and their role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Dionne Y Honing
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Sanofi, 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
12
|
Seguin-Devaux C, Zimmer J. Adoptive T Regulatory Cell Therapy Takes an Important Step. NEJM EVIDENCE 2024; 3:EVIDe2400109. [PMID: 38804780 DOI: 10.1056/evide2400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
- Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
13
|
Weijler AM, Wekerle T. Combining Treg Therapy With Donor Bone Marrow Transplantation: Experimental Progress and Clinical Perspective. Transplantation 2024; 108:1100-1108. [PMID: 37789519 DOI: 10.1097/tp.0000000000004814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Donor-specific tolerance remains a goal in transplantation because it could improve graft survival and reduce morbidity. Cotransplantation of donor hematopoietic cells to achieve chimerism is a promising approach for tolerance induction, which was successfully tested in clinical trials. However, current protocols are associated with side effects related to the myelosuppressive recipient conditioning, which makes it difficult to introduce them as standard therapy. More recently, adoptive cell therapy with polyclonal or donor-specific regulatory T cells (Treg) proved safe and feasible in several transplant trials, but it is unclear whether it can induce tolerance on its own. The combination of both approaches-Treg therapy and hematopoietic cell transplantation-leads to chimerism and tolerance without myelosuppressive treatment in murine models. Treg therapy promotes engraftment of allogeneic hematopoietic cells, reducing conditioning requirements and enhancing regulatory mechanisms maintaining tolerance. This review discusses possible modes of action of transferred Treg in experimental chimerism models and describes translational efforts investigating the potent synergy of Treg and chimerism.
Collapse
Affiliation(s)
- Anna Marianne Weijler
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
14
|
Liston A, Pasciuto E, Fitzgerald DC, Yshii L. Brain regulatory T cells. Nat Rev Immunol 2024; 24:326-337. [PMID: 38040953 DOI: 10.1038/s41577-023-00960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/03/2023]
Abstract
The brain, long thought to be isolated from the peripheral immune system, is increasingly recognized to be integrated into a systemic immunological network. These conduits of immune-brain interaction and immunosurveillance processes necessitate the presence of complementary immunoregulatory mechanisms, of which brain regulatory T cells (Treg cells) are likely a key facet. Treg cells represent a dynamic population in the brain, with continual influx, specialization to a brain-residency phenotype and relatively rapid displacement by newly incoming cells. In addition to their functions in suppressing adaptive immunity, an emerging view is that Treg cells in the brain dampen down glial reactivity in response to a range of neurological insults, and directly assist in multiple regenerative and reparative processes during tissue pathology. The utility and malleability of the brain Treg cell population make it an attractive therapeutic target across the full spectrum of neurological conditions, ranging from neuroinflammatory to neurodegenerative and even psychiatric diseases. Therapeutic modalities currently under intense development include Treg cell therapy, IL-2 therapy to boost Treg cell numbers and multiple innovative approaches to couple these therapeutics to brain delivery mechanisms for enhanced potency. Here we review the state of the art of brain Treg cell knowledge together with the potential avenues for future integration into medical practice.
Collapse
Affiliation(s)
- Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Emanuela Pasciuto
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
- Center for Molecular Neurology, VIB, Antwerp, Belgium.
| | - Denise C Fitzgerald
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.
| | - Lidia Yshii
- Department of Neurosciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Chen Y, Liu C, Fang Y, Chen W, Qiu J, Zhu M, Wei W, Tu J. Developing CAR-immune cell therapy against SARS-CoV-2: Current status, challenges and prospects. Biochem Pharmacol 2024; 222:116066. [PMID: 38373592 DOI: 10.1016/j.bcp.2024.116066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Chimeric antigen receptor (CAR)-immune cell therapy has revolutionized the anti-tumor field, achieving efficient and precise tumor clearance by directly guiding immune cell activity to target tumors. In addition, the use of CAR-immune cells to influence the composition and function of the immune system and ultimately achieve virus clearance and immune system homeostasis has attracted the interest of researchers. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered a global pandemic of coronavirus disease 2019 (COVID-19). To date, the rapidly mutating SARS-CoV-2 continues to challenge existing therapies and has raised public concerns regarding reinfection. In patients with COVID-19, the interaction of SARS-CoV-2 with the immune system influences the course of the disease, and the coexistence of over-activated immune system components, such as macrophages, and severely compromised immune system components, such as natural killer cells, reveals a dysregulated immune system. Dysregulated immune-induced inflammation may impair viral clearance and T-cell responses, causing cytokine storms and ultimately leading to patient death. Here, we summarize the research progress on the use of CAR-immune cells against SARS-CoV-2 infection. Furthermore, we discuss the feasibility, challenges and prospect of CAR-immune cells as a new immune candidate therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Chong Liu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Yilong Fang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Weile Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Jiaqi Qiu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Mengjuan Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
16
|
Romano A, Mortellaro A. The New Frontiers of Gene Therapy and Gene Editing in Inflammatory Diseases. Hum Gene Ther 2024; 35:219-231. [PMID: 38323580 DOI: 10.1089/hum.2023.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Abstract
Inflammatory diseases are conditions characterized by abnormal and often excessive immune responses, leading to tissue and organ inflammation. The complexity of these disorders arises from the intricate interplay of genetic factors and immune responses, which challenges conventional therapeutic approaches. However, the field of genetic manipulation has sparked unprecedented optimism in addressing these complex disorders. This review aims to comprehensively explore the application of gene therapy and gene editing in the context of inflammatory diseases, offering solutions that range from correcting genetic defects to precise immune modulation. These therapies have exhibited remarkable potential in ameliorating symptoms, improving quality of life, and even achieving disease remission. As we delve into recent breakthroughs and therapeutic applications, we illustrate how these advancements offer novel and transformative solutions for conditions that have traditionally eluded conventional treatments. By examining successful case studies and preclinical research, we emphasize the favorable results and substantial transformative impacts that gene-based interventions have demonstrated in patients and animal models of inflammatory diseases such as chronic granulomatous disease, cryopyrin-associated syndromes, and adenosine deaminase 2 deficiency, as well as those of multifactorial origins such as arthropathies (osteoarthritis, rheumatoid arthritis) and inflammatory bowel disease. In conclusion, gene therapy and gene editing offer transformative opportunities to address the underlying causes of inflammatory diseases, ushering in a new era of precision medicine and providing hope for personalized, targeted treatments.
Collapse
Affiliation(s)
- Alessandro Romano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Recktenwald M, Hutt E, Davis L, MacAulay J, Daringer NM, Galie PA, Staehle MM, Vega SL. Engineering transcriptional regulation for cell-based therapies. SLAS Technol 2024; 29:100121. [PMID: 38340892 DOI: 10.1016/j.slast.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
A major aim in the field of synthetic biology is developing tools capable of responding to user-defined inputs by activating therapeutically relevant cellular functions. Gene transcription and regulation in response to external stimuli are some of the most powerful and versatile of these cellular functions being explored. Motivated by the success of chimeric antigen receptor (CAR) T-cell therapies, transmembrane receptor-based platforms have been embraced for their ability to sense extracellular ligands and to subsequently activate intracellular signal transduction. The integration of transmembrane receptors with transcriptional activation platforms has not yet achieved its full potential. Transient expression of plasmid DNA is often used to explore gene regulation platforms in vitro. However, applications capable of targeting therapeutically relevant endogenous or stably integrated genes are more clinically relevant. Gene regulation may allow for engineered cells to traffic into tissues of interest and secrete functional proteins into the extracellular space or to differentiate into functional cells. Transmembrane receptors that regulate transcription have the potential to revolutionize cell therapies in a myriad of applications, including cancer treatment and regenerative medicine. In this review, we will examine current engineering approaches to control transcription in mammalian cells with an emphasis on systems that can be selectively activated in response to extracellular signals. We will also speculate on the potential therapeutic applications of these technologies and examine promising approaches to expand their capabilities and tighten the control of gene regulation in cellular therapies.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
18
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
19
|
Sato Y, Nathan A, Shipp S, Wright JF, Tate KM, Wani P, Roncarolo MG, Bacchetta R. A novel FOXP3 knockout-humanized mouse model for pre-clinical safety and efficacy evaluation of Treg-like cell products. Mol Ther Methods Clin Dev 2023; 31:101150. [PMID: 38027059 PMCID: PMC10679769 DOI: 10.1016/j.omtm.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
Forkhead box P3 (FOXP3) is an essential transcription factor for regulatory T cell (Treg) function. Defects in Tregs mediate many immune diseases including the monogenic autoimmune disease immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), which is caused by FOXP3 mutations. Treg cell products are a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection, as well as in the treatment of acquired autoimmune diseases. We have recently opened a phase I clinical trial for IPEX patients using autologous engineered Treg-like cells, CD4LVFOXP3. To facilitate the pre-clinical studies, a novel humanized-mouse (hu-mouse) model was developed whereby immune-deficient mice were transplanted with human hematopoietic stem progenitor cells (HSPCs) in which the FOXP3 gene was knocked out (FOXP3KO) using CRISPR-Cas9. Mice transplanted with FOXP3KO HSPCs had impaired survival, developed lymphoproliferation 10-12 weeks post-transplant and T cell infiltration of the gut, resembling human IPEX. Strikingly, injection of CD4LVFOXP3 into the FOXP3KO hu-mice restored in vivo regulatory functions, including control of lymphoproliferation and inhibition of T cell infiltration in the colon. This hu-mouse disease model can be reproducibly established and constitutes an ideal model to assess pre-clinical efficacy of human Treg cell investigational products.
Collapse
Affiliation(s)
- Yohei Sato
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Abinaya Nathan
- Center for Definitive Curative Medicine (CDCM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Suzette Shipp
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - John Fraser Wright
- Center for Definitive Curative Medicine (CDCM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Keri Marie Tate
- Laboratory for Cell and Gene Medicine (LCGM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Prachi Wani
- Laboratory for Cell and Gene Medicine (LCGM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Maria-Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
- Center for Definitive Curative Medicine (CDCM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| | - Rosa Bacchetta
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
- Center for Definitive Curative Medicine (CDCM) Stanford University School of Medicine, Lorry I. Lokey Stem Cell Research Building, 265 Campus Drive West, Room 3039, Stanford, CA 94305, USA
| |
Collapse
|