1
|
Rudell JC, McLoon LK. Effects of Short-Term Treatment of Rabbit Extraocular Muscle With Ciliary Neurotrophic Factor. Invest Ophthalmol Vis Sci 2024; 65:41. [PMID: 39330989 PMCID: PMC11437687 DOI: 10.1167/iovs.65.11.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Purpose Little is known about the effect of ciliary neurotrophic factor (CNTF) on extraocular muscles, but microarray studies suggested CNTF might play a role in the development and/or maintenance of strabismus. The effect of short-term treatment of adult rabbit extraocular muscle with injected CNTF was examined for its ability to alter muscle characteristics. Methods Eight adult New Zealand white rabbits received an injection into one superior rectus muscle of 2 µg/100 µL CNTF on 3 consecutive days. One week after the first injection, the rabbits were euthanized, and the treated and contralateral superior rectus muscles were assessed for force generation capacity and contraction characteristics using an in vitro stimulation protocol and compared to naïve control superior rectus muscles. All muscles were analyzed to determine mean cross-sectional areas and expression of slow twitch myosin heavy chain isoform. Results Short-term treatment of rabbit superior rectus muscles with CNTF resulted in a significant decrease in muscle force generation, but only at the higher stimulation frequencies. Significantly decreased myofiber cross-sectional areas of the treated muscles correlated with the decreased generated force. In addition, there were significant changes to contractile properties of the treated muscles, as well as a decrease in the number of myofibers expressing slow twitch myosin heavy chain. Conclusions We show that short-term treatment of a single rabbit superior rectus muscle results in decreased myofiber size, decreased force, and altered contractile characteristics. Further studies are needed to determine if it can play a role in improving alignment in animal models of strabismus.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University of California San Diego, La Jolla, California, United States
| | - Linda K McLoon
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
2
|
Lv ST, Gao K, Choe HM, Jin ZY, Chang SY, Quan BH, Yin XJ. Effects of myostatin gene knockout on porcine extraocular muscles. Anim Biotechnol 2023; 34:2150-2158. [PMID: 35658834 DOI: 10.1080/10495398.2022.2077741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Myostatin (MSTN), a negative regulator of skeletal muscle mass, is not well known in extraocular muscles (EOMs). EOMs are specialized skeletal muscles. Hence, in this study, the effect of MSTN on the superior rectus (SR) and superior oblique (SO) of 2-month-old MSTN knockout (MSTN-/-) and wild-type (WT) pigs of the same genotype was investigated. SR (P < 0.01) and SO (P < 0.001) fiber cross-sectional areas of MSTN-/- pigs were significantly larger than those of WT pigs. Compared with WT pigs, MSTN-/- SO displayed a decrease in type I fibers (WT: 27.24%, MSTN-/-: 10.32%, P < 0.001). Type IIb fibers were higher in MSTN-/- pigs than in WT pigs (WT: 30.38%, MSTN-/-: 62.24%, P < 0.001). The trend in SR was the same as that in SO, although the trend in SO was greater than that in SR. The expression of myogenic differentiation factor (MyoD) and myogenic (MyoG) showed a significant increase in MSTN-/- SO (about 2.5-fold and 2-fold, respectively at the gene expression level, about 1.5-fold at the protein level) compared with WT pigs. MSTN plays an important role in the development of EOMs and regulates the muscle fiber type by modulating the gene expression of MyoD and MyoG in pigs.
Collapse
Affiliation(s)
- Si-Tong Lv
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Kai Gao
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Hak Myong Choe
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Zheng-Yun Jin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Shuang-Yan Chang
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Biao-Hu Quan
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| | - Xi-Jun Yin
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
3
|
Zehra Z, Khan N, Nadeem M, Siddiqui SN, von Bartheld CS, Azam M, Qamar R. Association of IGF1 polymorphisms with exotropia in a Pakistani cohort. Mol Vis 2022; 28:369-377. [PMID: 36338665 PMCID: PMC9603902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023] Open
Abstract
PURPOSE Strabismus (STBMS) is a multifactorial ocular disorder in children that leads to misalignment of the eyes. Insulin-like growth factor 1 (IGF1) has been shown to be involved in the development of extraocular muscles and myopia; however, data are limited on the genetic associations of IGF1 with STBMS in Pakistan. METHODS Two hundred seventy-four STBMS cases and 272 unaffected controls were recruited, and their DNA was extracted. Two IGF1 single nucleotide polymorphisms, rs6214 and rs5742632, were genotyped using PCR-restriction fragment length polymorphism. Univariate logistic regression analysis was performed to determine the association of these single nucleotide polymorphisms with STBMS, and the results were adjusted for age and sex. In addition, 26 extraocular muscle tissues were collected from patients with STBMS undergoing squint correction surgery, along with 3 deceased control samples. IGF1 mRNA expression was measured by quantitative PCR; the Mann-Whitney U test was applied, and fold change was calculated. Logistic regression analysis was applied to determine the association of RNA expression and fold change with genotype. RESULTS Multivariate logistic regression analysis revealed that rs5742632 (odds ratio [95% confidence interval] = 1.05[1.01-1.06], p = 0.03) is associated with STBM. Moreover, rs6214 (1.03[1.01-1.05], p = 0.03) and rs5742632 (1.09[1.04-1.11], p = 0.04) were associated with exotropia. Statistically, no significant difference in IGF1 mRNA expression in the extraocular muscles between the STBMS cases and the controls was observed. CONCLUSIONS IGF1 polymorphisms rs5742632 (A>G) and rs6214 (C>T) are plausible risk factors for the development of exotropia. However, the physiologic mechanism requires further evaluation.
Collapse
Affiliation(s)
- Zainab Zehra
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV
| | - Netasha Khan
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Minhal Nadeem
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
| | | | | | - Maleeha Azam
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
| | - Raheel Qamar
- Translational Genomics Laboratory, Department of Biosciences, COMSATS University Islamabad, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
- Science and Technology Sector, ICESCO, Rabat, Morocco
| |
Collapse
|
4
|
Rudell JC, McLoon LK. Effect of Fibroblast Growth Factor 2 on Extraocular Muscle Structure and Function. Invest Ophthalmol Vis Sci 2021; 62:34. [PMID: 34293078 PMCID: PMC8300058 DOI: 10.1167/iovs.62.9.34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Mutations in the fibroblast growth factor (FGF) receptor can result in strabismus, but little is known about how FGFs affect extraocular muscle structure and function. These were assessed after short-term and long-term exposure to exogenously applied FGF2 to determine the effect of enhanced signaling. Methods One superior rectus muscle of adult rabbits received either a series of three injections of 500 ng, 1 µg, or 5 µg FGF2 and examined after 1 week, or received sustained treatment with FGF2 and examined after 1, 2, or 3 months. Muscles were assessed for alterations in force generation, myofiber size, and satellite cell number after each treatment. Results One week after the 5 µg FGF2 injections, treated muscles showed significantly increased force generation compared with naïve controls, which correlated with increased myofiber cross-sectional areas and Pax7-positive satellite cells. In contrast, 3 months of sustained FGF2 treatment resulted in decreased force generation, which correlated with decreased myofiber size and decreased satellite cells compared with naïve control and the untreated contralateral side. Conclusions FGF2 had distinctly different effects when short-term and long-term treatments were compared. The decreased size and ability to generate force correlated with decreased myofiber areas seen in individuals with Apert syndrome, where there is sustained activation of FGF signaling. Knowing more about signaling pathways critical for extraocular muscle function, development, and disease will pave the way for improved treatment options for strabismus patients with FGF abnormalities in craniofacial disease, which also may be applicable to other strabismus patients.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University of California San Diego, San Diego, California, United States
| | - Linda K McLoon
- Departments of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
5
|
Rudell JC, Fleuriet J, Mustari MJ, McLoon LK. Childhood Onset Strabismus: A Neurotrophic Factor Hypothesis. J Binocul Vis Ocul Motil 2021; 71:35-40. [PMID: 33872122 PMCID: PMC8102408 DOI: 10.1080/2576117x.2021.1893585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
Strabismus is a genetically heterogeneous disorder with complex molecular and neurophysiological causes. Evidence in the literature suggests a strong role for motor innervation in the etiology of strabismus, which connects central neural processes to the peripheral extraocular muscles. Current treatments of strabismus through surgery show that an inherent sensorimotor plasticity in the ocular motor system decreases the effectiveness of treatment, often driving eye alignment back toward its misaligned pre-surgical state by altering extraocular muscle tonus. There is recent interest in capitalizing on existing biological processes in extraocular muscles to overcome these compensatory mechanisms. Neurotrophins are trophic factors that regulate survival and development in neurons and muscle, including extraocular muscles. Local administration of neurotrophins to extraocular muscles partially reversed strabismus in an animal model of strabismus. The hypothesis is that sustained release of neurotrophins gives more time for the ocular motor system to adapt to a slow change in alignment in the desired direction. The effect of neurotrophins on extraocular muscles is complex, as different neurotrophic factors have diverse effects on extraocular muscle contraction profiles, patterns of innervation, and density of extraocular muscle precursor cells. Neurotrophic factors show promise as a therapeutic option for strabismus, which may help to improve treatment outcomes and offset devastating amblyopia and psychosocial effects of disease in strabismus patients.
Collapse
Affiliation(s)
- Jolene C Rudell
- Department of Ophthalmology, University California San Diego, San Diego, California
| | - Jérome Fleuriet
- Assistance Publique-Hôpitaux de Paris, Intensive Care Unit, Raymond Poincaré Hospital, Garches, France
| | - Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
6
|
Eye alignment changes caused by sustained GDNF treatment of an extraocular muscle in infant non-human primates. Sci Rep 2020; 10:11927. [PMID: 32681083 PMCID: PMC7368047 DOI: 10.1038/s41598-020-68743-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
The ability of sustained treatment of a single extraocular muscle with glial cell line-derived neurotrophic factor (GDNF) to produce a strabismus in infant non-human primates was tested. Six infant non-human primates received a pellet containing GDNF, releasing 2 µg/day for 90 days, on one medial rectus muscle. Eye alignment was assessed up to 6 months. Five of the six animals showed a slow decrease in eye misalignment from the significant exotropia present at birth, ending with approximately 10° of exotropia. Controls became orthotropic. Misalignment averaged 8° three months after treatment ended. After sustained GDNF treatment, few changes were seen in mean myofiber cross-sectional areas compared to age-matched naïve controls. Neuromuscular junction number was unaltered in the medial rectus muscles, but were significantly reduced in the untreated lateral recti. Neuromuscular junctions on slow fibers became multiply innervated after this sustained GDNF treatment. Pitx2-positive cells significantly decreased in treated and contralateral medial rectus muscles. Our study suggests that balanced GDNF signaling plays a role in normal development and maintenance of orthotropia. Sustained GDNF treatment of one medial rectus muscle resulted in a measurable misalignment largely maintained 3 months after treatment ended. Structural changes suggest mechanisms for producing an imbalance in muscle function.
Collapse
|
7
|
Fleuriet J, McLoon LK. Visualizing Neuronal Adaptation Over Time After Treatment of Strabismus. Invest Ophthalmol Vis Sci 2018; 59:5022-5024. [PMID: 30326069 PMCID: PMC6188464 DOI: 10.1167/iovs.18-25651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Jérome Fleuriet
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, Minneapolis, Minnesota, United States;
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
8
|
Fitzpatrick KR, Cucak A, McLoon LK. Changing muscle function with sustained glial derived neurotrophic factor treatment of rabbit extraocular muscle. PLoS One 2018; 13:e0202861. [PMID: 30142211 PMCID: PMC6108505 DOI: 10.1371/journal.pone.0202861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/10/2018] [Indexed: 01/05/2023] Open
Abstract
Recent microarray and RNAseq experiments provided evidence that glial derived neurotrophic factor (GDNF) levels were decreased in extraocular muscles from human strabismic subjects compared to age-matched controls. We assessed the effect of sustained GDNF treatment of the superior rectus muscles of rabbits on their physiological and morphological characteristics, and these were compared to naïve control muscles. Superior rectus muscles of rabbits were implanted with a sustained release pellet of GDNF to deliver 2μg/day, with the contralateral side receiving a placebo pellet. After one month, the muscles were assessed using in vitro physiological methods. The muscles were examined histologically for alteration in fiber size, myosin expression patterns, neuromuscular junction size, and stem cell numbers and compared to age-matched naïve control muscles. GDNF resulted in decreased force generation, which was also seen on the untreated contralateral superior rectus muscles. Muscle relaxation times were increased in the GDNF treated muscles. Myofiber mean cross-sectional areas were increased after the GDNF treatment, but there was a compensatory increase in expression of developmental, neonatal, and slow tonic myosin heavy chain isoforms. In addition, in the GDNF treated muscles there was a large increase in Pitx2-positive myogenic precursor cells. One month of GDNF resulted in significant extraocular muscle adaptation. These changes are interesting relative to the decreased levels of GDNF in the muscles from subjects with strabismus and preliminary data in infant non-human primates where sustained GDNF treatment produced a strabismus. These data support the view that GDNF has the potential for improving eye alignment in subjects with strabismus.
Collapse
Affiliation(s)
- Krysta R. Fitzpatrick
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anja Cucak
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Linda K. McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Ophthalmology and Visual Neurosciences and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
9
|
Sierra M, Ortillés Á, Miana-Mena FJ, Grasa J, Calvo B. Effect of Cryopreserved Amniotic Membrane on the Mechanical Properties of Skeletal Muscle after Strabismus Surgery in Rabbits. Curr Eye Res 2017; 43:193-199. [DOI: 10.1080/02713683.2017.1387272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marta Sierra
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (i3A), University of Zaragoza, Zaragoza, Spain
| | - Ángel Ortillés
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (i3A), University of Zaragoza, Zaragoza, Spain
- Department of Animal Pathology, University of Zaragoza, Zaragoza, Spain
| | - Francisco J Miana-Mena
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (i3A), University of Zaragoza, Zaragoza, Spain
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain
| | - Jorge Grasa
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (i3A), University of Zaragoza, Zaragoza, Spain
- CIBER-BBN. Centro de Investigación en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Begoña Calvo
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (i3A), University of Zaragoza, Zaragoza, Spain
- CIBER-BBN. Centro de Investigación en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| |
Collapse
|
10
|
McLoon LK, Christiansen SP, Ghose GM, Das VE, Mustari MJ. Improvement of Eye Alignment in Adult Strabismic Monkeys by Sustained IGF-1 Treatment. Invest Ophthalmol Vis Sci 2017; 57:6070-6078. [PMID: 27820875 PMCID: PMC5114034 DOI: 10.1167/iovs.16-19739] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The goal of this study was to determine if continuous application of insulin-like growth factor-1 (IGF-1) could improve eye alignment of adult strabismic nonhuman primates and to assess possible mechanisms of effect. Methods A continuous release pellet of IGF-1 was placed on one medial rectus muscle in two adult nonhuman primates (M1, M2) rendered exotropic by the alternating monocular occlusion method during the first months of life. Eye alignment and eye movements were recorded for 3 months, after which M1 was euthanized, and the lateral and medial rectus muscles were removed for morphometric analysis of fiber size, nerve, and neuromuscular density. Results Monkey 1 showed a 40% reduction in strabismus angle, a reduction of exotropia of approximately 11° to 14° after 3 months. Monkey 2 showed a 15% improvement, with a reduction of its exotropia by approximately 3°. The treated medial rectus muscle of M1 showed increased mean myofiber cross-sectional areas. Increases in myofiber size also were seen in the contralateral medial rectus and lateral rectus muscles. Similarly, nerve density increased in the contralateral medial rectus and yoked lateral rectus. Conclusions This study demonstrates that in adult nonhuman primates with a sensory-induced exotropia in infancy, continuous IGF-1 treatment improves eye alignment, resulting in muscle fiber enlargement and altered innervational density that includes the untreated muscles. This supports the view that there is sufficient plasticity in the adult ocular motor system to allow continuous IGF-1 treatment over months to produce improvement in eye alignment in early-onset strabismus.
Collapse
Affiliation(s)
- Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Stephen P Christiansen
- Departments of Ophthalmology and Pediatrics, Boston University School of Medicine, Boston, Massachusetts, United States
| | - Geoffrey M Ghose
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States
| | - Vallabh E Das
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Michael J Mustari
- Washington National Primate Center and Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| |
Collapse
|
11
|
Walton MMG, Pallus A, Fleuriet J, Mustari MJ, Tarczy-Hornoch K. Neural mechanisms of oculomotor abnormalities in the infantile strabismus syndrome. J Neurophysiol 2017; 118:280-299. [PMID: 28404829 DOI: 10.1152/jn.00934.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/03/2017] [Accepted: 04/07/2017] [Indexed: 02/08/2023] Open
Abstract
Infantile strabismus is characterized by numerous visual and oculomotor abnormalities. Recently nonhuman primate models of infantile strabismus have been established, with characteristics that closely match those observed in human patients. This has made it possible to study the neural basis for visual and oculomotor symptoms in infantile strabismus. In this review, we consider the available evidence for neural abnormalities in structures related to oculomotor pathways ranging from visual cortex to oculomotor nuclei. These studies provide compelling evidence that a disturbance of binocular vision during a sensitive period early in life, whatever the cause, results in a cascade of abnormalities through numerous brain areas involved in visual functions and eye movements.
Collapse
Affiliation(s)
- Mark M G Walton
- Washington National Primate Research Center, University of Washington, Seattle, Washington;
| | - Adam Pallus
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Jérome Fleuriet
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington
| | - Michael J Mustari
- Washington National Primate Research Center, University of Washington, Seattle, Washington.,Department of Ophthalmology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington; and
| | - Kristina Tarczy-Hornoch
- Department of Ophthalmology, University of Washington, Seattle, Washington.,Seattle Children's Hospital, Seattle, Washington
| |
Collapse
|
12
|
Abstract
Disrupting binocular vision in infancy leads to strabismus and oftentimes to a variety of associated visual sensory deficits and oculomotor abnormalities. Investigation of this disorder has been aided by the development of various animal models, each of which has advantages and disadvantages. In comparison to studies of binocular visual responses in cortical structures, investigations of neural oculomotor structures that mediate the misalignment and abnormalities of eye movements have been more recent, and these studies have shown that different brain areas are intimately involved in driving several aspects of the strabismic condition, including horizontal misalignment, dissociated deviations, A and V patterns of strabismus, disconjugate eye movements, nystagmus, and fixation switch. The responses of cells in visual and oculomotor areas that potentially drive the sensory deficits and also eye alignment and eye movement abnormalities follow a general theme of disrupted calibration, lower sensitivity, and poorer specificity compared with the normally developed visual oculomotor system.
Collapse
Affiliation(s)
- Vallabh E Das
- College of Optometry, University of Houston, Houston, Texas 77204;
| |
Collapse
|
13
|
Willoughby CL, Fleuriet J, Walton MM, Mustari MJ, McLoon LK. Adaptability of the Immature Ocular Motor Control System: Unilateral IGF-1 Medial Rectus Treatment. Invest Ophthalmol Vis Sci 2015; 56:3484-96. [PMID: 26030103 DOI: 10.1167/iovs.15-16761] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Unilateral treatment with sustained release IGF-1 to one medial rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop as a result of changes in extraocular muscles during the critical period of development of binocularity. METHODS Sustained release IGF-1 pellets were implanted unilaterally on one medial rectus muscle in normal infant monkeys during the first 2 weeks of life. Eye position was monitored using standard photographic methods. After 3 months of treatment, myofiber and neuromuscular size, myosin composition, and innervation density were quantified in all rectus muscles and compared to those in age-matched controls. RESULTS Sustained unilateral IGF-1 treatments resulted in strabismus for all treated subjects; 3 of the 4 subjects had a clinically significant strabismus of more than 10°. Both the treated medial rectus and the untreated ipsilateral antagonist lateral rectus muscles had significantly larger myofibers. No adaptation in myofiber size occurred in the contralateral functionally yoked lateral rectus or in myosin composition, neuromuscular junction size, or nerve density. CONCLUSIONS Sustained unilateral IGF-1 treatment to extraocular muscles during the sensitive period of development of orthotropic eye alignment and binocularity was sufficient to disturb ocular motor development, resulting in strabismus in infant monkeys. This could be due to altering fusion of gaze during the early sensitive period. Serial measurements of eye alignment suggested the IGF-1-treated infants received insufficient coordinated binocular experience, preventing the establishment of normal eye alignment. Our results uniquely suggest that abnormal signaling by the extraocular muscles may be a cause of strabismus.
Collapse
Affiliation(s)
- Christy L Willoughby
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M Walton
- Washington National Primate Research Center, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
14
|
Willoughby CL, Fleuriet J, Walton MM, Mustari MJ, McLoon LK. Adaptation of slow myofibers: the effect of sustained BDNF treatment of extraocular muscles in infant nonhuman primates. Invest Ophthalmol Vis Sci 2015; 56:3467-83. [PMID: 26030102 DOI: 10.1167/iovs.15-16852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE We evaluated promising new treatment options for strabismus. Neurotrophic factors have emerged as a potential treatment for oculomotor disorders because of diverse roles in signaling to muscles and motor neurons. Unilateral treatment with sustained release brain-derived neurotrophic factor (BDNF) to a single lateral rectus muscle in infant monkeys was performed to test the hypothesis that strabismus would develop in correlation with extraocular muscle (EOM) changes during the critical period for development of binocularity. METHODS The lateral rectus muscles of one eye in two infant macaques were treated with sustained delivery of BDNF for 3 months. Eye alignment was assessed using standard photographic methods. Muscle specimens were analyzed to examine the effects of BDNF on the density, morphology, and size of neuromuscular junctions, as well as myofiber size. Counts were compared to age-matched controls. RESULTS No change in eye alignment occurred with BDNF treatment. Compared to control muscle, neuromuscular junctions on myofibers expressing slow myosins had a larger area. Myofibers expressing slow myosin had larger diameters, and the percentage of myofibers expressing slow myosins increased in the proximal end of the muscle. Expression of BDNF was examined in control EOM, and observed to have strongest immunoreactivity outside the endplate zone. CONCLUSIONS We hypothesize that the oculomotor system adapted to sustained BDNF treatment to preserve normal alignment. Our results suggest that BDNF treatment preferentially altered myofibers expressing slow myosins. This implicates BDNF signaling as influencing the slow twitch properties of EOM.
Collapse
Affiliation(s)
- Christy L Willoughby
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| | - Jérome Fleuriet
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Mark M Walton
- Washington National Primate Research Center, Seattle, Washington, United States
| | - Michael J Mustari
- Washington National Primate Research Center, Seattle, Washington, United States 4Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Linda K McLoon
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States 2Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
15
|
Willoughby CL, Ralles S, Christiansen SP, McLoon LK. Effects of sequential injections of hepatocyte growth factor and insulin-like growth factor-I on adult rabbit extraocular muscle. J AAPOS 2012; 16:354-60. [PMID: 22929450 PMCID: PMC3431511 DOI: 10.1016/j.jaapos.2012.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine whether hepatocyte growth factor (HGF) and insulin-like growth factor-I (IGF-I) have synergistic effects in promoting extraocular muscle fiber growth and force generation. METHODS A superior rectus muscle of adult rabbits was treated with either a single injection of HGF or sequential injections of HGF followed 1 week later by IGF-I. One week after HGF alone and 1 week after the IGF-I injection, the superior rectus muscles from treated and control orbits were examined for alterations in force generation as well as changes in myofiber size. RESULTS Injection of HGF alone did not result in changes to muscle force, specific tension, or myofiber cross-sectional area; however, it did result in a significant increase in numbers of satellite cells. Sequential injection of HGF and IGF-I resulted in significantly increased force, specific tension, and myofiber cross-sectional areas as well as increased numbers of satellite cells. CONCLUSIONS Preinjection with HGF augments the treatment effect of IGF-I. This synergistic effect is likely a result of HGF-induced activation of satellite cells and should allow a reduction in IGF-I dosing required to produce a given increase in extraocular muscle force generation.
Collapse
|
16
|
Willoughby CL, Christiansen SP, Mustari MJ, McLoon LK. Effects of the sustained release of IGF-1 on extraocular muscle of the infant non-human primate: adaptations at the effector organ level. Invest Ophthalmol Vis Sci 2012; 53:68-75. [PMID: 22125277 DOI: 10.1167/iovs.11-8356] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The authors have demonstrated that prolonged exposure of adult rabbit extraocular muscle (EOM) to insulin-like growth factor-1 (IGF-1) results in significantly increased cross-sectional area and muscle force generation lasting over 3 months. Here the authors assess the effects on EOM of sustained IGF-1 treatment on normal binocular infant Macaca mulatta. METHODS Sustained-release IGF-1 pellets were implanted bilaterally in each medial rectus (MR) muscle of two normal infant non-human primates. Eye position was examined using corneal light reflex testing. After 3 months, morphometric analyses of myofiber cross-sectional area and innervation density in treated MR muscles were compared with an age-matched control and with antagonist lateral rectus (LR) muscles. RESULTS After 3 months, the slow-release pellets remained at the implantation site in all four MR muscles treated. The treated MR showed pronounced increases in cross-sectional area and nerve density, mirrored in the untreated antagonist LR. CONCLUSIONS Three months of bilateral sustained IGF-1 release in infant non-human primate MR resulted in increased muscle size and innervation density, mirrored in the untreated antagonist LR. It appears that bilateral MR treatment resulted in slow adaptation of both treated MR and contralateral LR muscles over time such that functional homeostasis and near-normal alignment were maintained. Further work is needed to determine what signaling mechanisms maintain proportional innervation when EOMs are forced to adapt to an externally applied perturbation.
Collapse
Affiliation(s)
- Christy L Willoughby
- Department of Ophthalmology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
17
|
Feng CY, von Bartheld CS. Expression of insulin-like growth factor 1 isoforms in the rabbit oculomotor system. Growth Horm IGF Res 2011; 21:228-232. [PMID: 21703892 PMCID: PMC3140565 DOI: 10.1016/j.ghir.2011.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/03/2011] [Accepted: 06/04/2011] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The insulin-like growth factor-1 (IGF-1) gene encodes two isoforms, IGF-1Ea and IGF-1Eb. Both isoforms can regulate skeletal muscle growth and strength. It has been suggested that IGF-Eb may be more potent in promoting skeletal muscle hypertrophy. Precise contractile force regulation is particularly important in the oculomotor system. However, expression of these isoforms in mammalian extraocular muscles (EOMs) is unknown. Here, we examined their expression in rabbit EOMs and the innervating nerve, two potential sources for myogenic growth factors, and compared isoform expression between EOMs and limb skeletal muscles. DESIGN Expression of IGF-1 isoforms was quantified by real-time RT-PCR in adult rabbit EOMs, trochlear and ophthalmic nerves, and compared with expression in rabbit limb skeletal muscles. The presence of mature IGF-1 peptide in the muscles was further examined by Western blot. RESULTS Both IGF-1Ea and IGF-1Eb were expressed in the EOM and the trochlear nerve. Both isoforms were expressed at significantly higher levels (9-fold) in EOM than in limb skeletal muscle. Transcripts of IGF-1 isoforms, of IGF-1 receptor and of IGF binding proteins showed a gradient distribution along the EOM from proximal to distal. The mature IGF-1 protein showed the same gradient distribution in the EOM. CONCLUSIONS Expression of relatively abundant amounts of both IGF-1 splicing isoforms in EOMs, and at a significantly higher level than in limb skeletal muscle, underscores the potential relevance of these myogenic growth factors in EOM plasticity and force regulation.
Collapse
Affiliation(s)
- Cheng-Yuan Feng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|
18
|
Anderson BC, Daniel ML, Kendall JD, Christiansen SP, McLoon LK. Sustained release of bone morphogenetic protein-4 in adult rabbit extraocular muscle results in decreased force and muscle size: potential for strabismus treatment. Invest Ophthalmol Vis Sci 2011; 52:4021-9. [PMID: 21357389 DOI: 10.1167/iovs.10-6878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose. To assess the effect of a sustained-release preparation of bone morphogenetic protein-4 (BMP-4) on EOM force generation and muscle size. Methods. Sustained-release pellets, releasing 500 nanograms/day of BMP-4 for a maximum of 3 months, were implanted beneath the superior rectus muscle (SR) belly in anesthetized adult rabbits. The contralateral side received a placebo pellet as a control. After 1, 3, and 6 months, SRs were removed, and force generation at twitch and tetanic frequencies as well as fatigue resistance were determined in vitro. Myofiber size, myosin heavy chain isoform expression, and satellite cell density were assessed histologically. Results. SR force generation was significantly decreased by BMP-4 compared with the contralateral controls. Force generation was decreased by 25-30% by 1 month, 31-50% by 3 months, and at 6 months, after 3 BMP-4-free months, force was still decreased by 20-31%. No change in fatigue was seen. Significant decreases in muscle size were seen, greatest at 3 months. At all time points Pax7- and MyoD-positive satellite cell densities were significantly decreased. Conclusions. The decreased force generation and muscle size caused by sustained release of BMP-4 suggests that myogenic signaling factors may provide a more biological method of decreasing muscle strength in vivo than exogenously administered toxins. Treating antagonist-agonist pairs of EOM with titratable, naturally occurring myogenic signaling and growth factors may provide safe, efficacious, nonsurgical treatment options for patients with strabismus.
Collapse
Affiliation(s)
- Brian C Anderson
- Departments of Ophthalmology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
19
|
Li T, Feng CY, von Bartheld CS. How to make rapid eye movements "rapid": the role of growth factors for muscle contractile properties. Pflugers Arch 2011; 461:373-86. [PMID: 21279379 DOI: 10.1007/s00424-011-0925-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Different muscle functions require different muscle contraction properties. Saccade-generating extraocular muscles (EOMs) are the fastest muscles in the human body, significantly faster than limb skeletal muscles. Muscle contraction speed is subjected to plasticity, i.e., contraction speed can be adjusted to serve different demands, but little is known about the molecular mechanisms that control contraction speed. Therefore, we examined whether myogenic growth factors modulate contractile properties, including twitch contraction time (onset of force to peak force) and half relaxation time (peak force to half relaxation). We examined effects of three muscle-derived growth factors: insulin-like growth factor 1 (IGF1), cardiotrophin-1 (CT1), and glial cell line-derived neurotrophic factor (GDNF). In gain-of-function experiments, CT1 or GDNF injected into the orbit shortened contraction time, and IGF1 or CT1 shortened half relaxation time. In loss-of-function experiments with binding proteins or neutralizing antibodies, elimination of endogenous IGFs prolonged both contraction time and half relaxation time, while eliminating endogenous GDNF prolonged contraction time, with no effect on half relaxation time. Elimination of endogenous IGFs or CT1, but not GDNF, significantly reduced contractile force. Thus, IGF1, CT1, and GDNF have partially overlapping but not identical effects on muscle contractile properties. Expression of these three growth factors was measured in chicken and/or rat EOMs by real-time PCR. The "fast" EOMs express significantly more message encoding these growth factors and their receptors than skeletal muscles with slower contractile properties. Taken together, these findings indicate that EOM contractile kinetics is regulated by the amount of myogenic growth factors available to the muscle.
Collapse
Affiliation(s)
- Tian Li
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, MS 352, Reno, NV 89557, USA
| | | | | |
Collapse
|
20
|
Li T, Wiggins LM, von Bartheld CS. Insulin-like growth factor-1 and cardiotrophin 1 increase strength and mass of extraocular muscle in juvenile chicken. Invest Ophthalmol Vis Sci 2009; 51:2479-86. [PMID: 20007833 DOI: 10.1167/iovs.09-4414] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Insulin-like growth factor 1 (IGF1) and cardiotrophin 1 (CT1) are known to increase the strength of extraocular muscles in adult and embryonic animals, but no information is available for the early postnatal period, when strabismus treatment in humans is most urgent. Here the authors sought to determine whether these trophic factors strengthen juvenile maturing extraocular muscles and gain insight into mechanisms of force increase. METHODS After two injections of IGF1, CT1, or both with different dosages in posthatch chickens, the authors quantified five parameters of the superior oblique extraocular muscle at 2 weeks of age: contractile force, muscle mass, total myofiber area, myofiber diameter, and number of proliferating satellite cells labeled by bromodeoxyuridine. RESULTS Treatment with IGF1, CT1, and combination of IGF1 and CT1 significantly increased contractile force by 14% to 22%. CT1 and combination treatment significantly increased muscle mass by 10% to 24%. IGF1/CT1 combination treatment did not have additive effects on strengthening muscles, compared with single-drug treatments. Myofiber area increased significantly with IGF1 and CT1 treatment in proximal, but not distal, parts of the muscle and this was due to increased fiber numbers or length (IGF1) or increased diameters of global layer myofibers (CT1). Trophic factors increased the number of proliferating (bromodeoxyuridine-labeled) satellite cells in proximal and middle segments of muscles. CONCLUSIONS Exogenous IGF1 and CT1 strengthen extraocular muscles during maturation. They predominantly remodel the proximal segment of juvenile extraocular muscles. This information about muscle plasticity may aid the design of pharmacologic treatment of strabismus in children during the "critical period" of oculomotor maturation.
Collapse
Affiliation(s)
- Tian Li
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | | | |
Collapse
|
21
|
Feng C, Von Bartheld CS. Schwann cells as a source of insulin-like growth factor-1 for extraocular muscles. Muscle Nerve 2009; 41:478-86. [DOI: 10.1002/mus.21519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Gardner R, Dawson EL, Adams GG, Lee JP. Long-term management of strabismus with multiple repeated injections of botulinum toxin. J AAPOS 2008; 12:569-75. [PMID: 18789738 DOI: 10.1016/j.jaapos.2008.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND In the healthcare system in the United Kingdom, a number of patients may be offered botulinum toxin as an alternative to surgery in the treatment of their strabismus. We report on our experience of treating those who have received 25 or more injections. METHODS A retrospective review of the botulinum toxin clinic database was used to identify patients who underwent 25 or more injections between November 1982 and January 2006. All patients with strabismus who met this criterion were included. A statistical analysis was performed in which we compared aspects of this group with those who had received 24 or fewer injections. RESULTS Fifty-seven patients (0.90%) fulfilled our criteria. There were 37 women and 20 men, with a mean age at first injection of 39 years (range, 15 to 80 years). The number of injections per patient ranged from 25 to 68 (mean, 34). The duration of treatment was between 3 and 22 years. The time interval between injections tended to increase in most patients and the angle tended to reduce. There was no statistical difference between the age at first injection, sex, site injected, diagnosis, and complication rate between the long-term group and the group that received 24 or fewer injections. The long-term group, however, had undergone more previous operations (p < or = 0.001) and had a lower degree of binocularity (p </= 0.001). CONCLUSIONS The treatment of strabismus with botulinum toxin on a long-term basis is practicable and valuable in patients with poor binocular potential, complicated strabismus, or multiple previous strabismus operations. A trend toward fewer injections with time was observed, and no significant adverse effects were observed with long-term treatment.
Collapse
|
23
|
Das VE. Investigating mechanisms of strabismus in nonhuman primates. J AAPOS 2008; 12:324-5. [PMID: 18708007 PMCID: PMC2601707 DOI: 10.1016/j.jaapos.2008.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Affiliation(s)
- Vallabh E. Das
- Division of Sensory-Motor Systems, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322
- Department of Neurology, Emory University, Atlanta, GA 30322
| |
Collapse
|
24
|
Christiansen SP, Anderson BC, McLoon LK. Botulinum toxin pretreatment augments the weakening effect of injection with ricin-mAb35 in rabbit extraocular muscle. J AAPOS 2008; 12:122-7. [PMID: 18258470 PMCID: PMC2394737 DOI: 10.1016/j.jaapos.2007.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 10/31/2007] [Accepted: 11/02/2007] [Indexed: 11/15/2022]
Abstract
PURPOSE To examine force generation and duration of effect of botulinum toxin pretreatment, followed by injection of ricin-mAb35 in extraocular muscle. METHODS In normal adult rabbits, one superior rectus muscle was injected with either 5 units botulinum toxin or 1/50 maximally tolerated dose for rats (rMTD) of ricin-mAb35. Additional rabbits were first injected with 5 units botulinum toxin, and after 1, 2, or 4 weeks the same muscle was injected with either 1/10 or 1/50 rMTD ricin-mAb35. In each treatment group, the contralateral muscle was injected with an equal volume of saline. After 12 weeks (1/50 rMTD) or 6 months (1/10 rMTD), the rabbits were euthanized. Both SR muscles were removed and assayed physiologically, using an in vitro apparatus. RESULTS Twelve weeks after treatment with either botulinum toxin or immunotoxin alone, only ricin-mAb35-treated muscles were weaker than control muscles at tetanic stimulation frequencies. Pretreatment with botulinum toxin prior to injection with immunotoxin, especially at shorter intervals between injections, resulted in significant decreases in twitch and tetanic force generation compared with controls and muscles treated with ricin-mAb35 only or botulinum toxin only. At 6 months, force generation was decreased from control only in muscles treated with the higher dose of ricin-mAb35. Botulinum toxin pretreatment did not augment this effect at 6 months. CONCLUSIONS Upregulation of postsynaptic nicotinic acetylcholine receptors caused by botulinum toxin pretreatment amplifies the reduction of force generation in extraocular muscle following secondary injection of the immunotoxin ricin-mAb35 within 3 months of treatment.
Collapse
|
25
|
Anderson BC, Christiansen SP, McLoon LK. Myogenic growth factors can decrease extraocular muscle force generation: a potential biological approach to the treatment of strabismus. Invest Ophthalmol Vis Sci 2008; 49:221-9. [PMID: 18172096 DOI: 10.1167/iovs.07-0600] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Future pharmacologic treatment of strabismus may be optimized if drugs that are less potentially toxic to patients can be developed. Prior studies have shown that direct injection of extraocular muscles (EOMs) with insulin growth factor or fibroblast growth factor results in significant increases in the generation of EOM force. The purpose of this study was to examine the morphometric and physiological effects of direct EOM injection with the growth factors BMP4, TGFbeta1, Shh, and Wnt3A. METHODS One superior rectus muscle of normal adult rabbits was injected with BMP4, TGFbeta1, Shh, or Wnt3A. The contralateral muscle was injected with an equal volume of saline to serve as a control. After 1 week, the animals were euthanatized, and both superior rectus muscles were removed and assayed physiologically. The muscles were stimulated at increasing frequencies to determine force generation. A separate group of treated and control superior rectus muscles were examined histologically for alterations in total muscle cross-sectional area and myosin heavy chain isoform (MyHC) composition. RESULTS One week after a single injection of BMP4, TGFbeta1, Shh, or Wnt3A, all treated muscles showed significant decreases in generation of force compared with control muscles. BMP4, TGFbeta1, Shh, and Wnt3A significantly decreased the mean myofiber cross-sectional area of fast MyHC-positive myofibers. BMP4 resulted in a conversion of fast-to-slow myofibers and a significant decrease in the percentage of developmental and neonatal MyHC-positive myofibers. Alterations in mean cross-sectional area and proportion of MyHCs were seen after injection with TGFbeta1, Shh, and Wnt3A. TGFbeta1 and BMP4 injections resulted in increased Pax7-positive satellite cells, whereas BMP4, TGFbeta1, and Wnt3A resulted in a decrease in MyoD-positive satellite cells. CONCLUSIONS These results suggest that, rather than using toxins or immunotoxins, a more biological approach to decrease muscle strength is possible and demonstrate the potential utility of myogenic signaling factors for decreasing EOM strength. Ongoing drug-delivery studies will elucidate means of extending treatment effect to make such agents clinically useful.
Collapse
Affiliation(s)
- Brian C Anderson
- Department of Ophthalmology, University of Minnesota, 2001 6th Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
26
|
Antunes-Foschini RS, Miyashita D, Bicas HEA, McLoon LK. Activated satellite cells in medial rectus muscles of patients with strabismus. Invest Ophthalmol Vis Sci 2008; 49:215-20. [PMID: 18172095 DOI: 10.1167/iovs.07-0507] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The goal of this study was to determine whether the medial rectus muscles of patients with a history of medial rectus underaction or overaction show alterations in the process of satellite cell activation when compared with normal age-matched control muscles. METHODS Medial rectus muscles were obtained with consent from adult patients undergoing surgical resection due to medial rectus underaction or overaction and were prepared for histologic examination by fixation and paraffin embedding. Control muscles were obtained from cornea donor eyes of adults who had no history of strabismus or neuromuscular disease. Cross sections were obtained and stained immunohistochemically for the presence of activated satellite cells, as identified by MyoD immunoreactivity, and the presence of the total satellite cell population, as identified by Pax7 immunoreactivity. The percentages of MyoD- and Pax7-positive satellite cells per 100 myofibers in cross section were calculated. RESULTS As predicted from results in the literature, MyoD-positive satellite cells, indicative of activation, were present in both the control and resected muscles. In the underacting medial rectus muscles, the percentages of MyoD- and Pax7-positive satellite cells, based on the number of myofibers, were approximately twofold higher than the percentages in the control muscles. In the overacting medial rectus muscles, the percentage of MyoD-positive satellite cells was twofold less than in the control muscles, whereas the percentage of Pax7-positive satellite cells significantly increased compared with that in the control specimens. CONCLUSIONS The presence of an increased number of activated satellite cells in the resected underacting medial rectus muscles and the decreased numbers of activated satellite cells in the overacting muscles was unexpected. The upregulation in the number of MyoD-positive satellite cells in underacting muscles suggests that there is potential for successful upregulation of size in these muscles, as the cellular machinery for muscle repair and regeneration, the satellite cells, is retained and active in patients with medial rectus underaction. The decreased number of activated satellite cells in overacting MR muscle suggests that factors as yet unknown in these overacting muscles are able to affect the number of satellite cells and/or their responsiveness compared with normal age-matched control muscles. These hypotheses are currently being tested.
Collapse
Affiliation(s)
- Rosalia S Antunes-Foschini
- Department of Ophthalmology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | | | |
Collapse
|
27
|
Croes SA, von Bartheld CS. Measurement of contractile force of skeletal and extraocular muscles: effects of blood supply, muscle size and in situ or in vitro preparation. J Neurosci Methods 2007; 166:53-65. [PMID: 17716744 PMCID: PMC2739692 DOI: 10.1016/j.jneumeth.2007.06.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 06/08/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
Abstract
Contractile forces can be measured in situ and in vitro. To maintain metabolic viability with sufficient diffusion of oxygen, established guidelines for in vitro skeletal muscle preparations recommend use of relatively thin muscles (< or =1.25 mm thick). Nevertheless, forces of thin extraocular muscles vary substantially between studies. Here, we examined parameters that affect force measurements of in situ and in vitro preparations, including blood supply, nerve stimulation, direct muscle stimulation, muscle size, oxygenated or non-oxygenated buffer solutions and the time after interruption of vascular circulation. We found that the absolute forces of extraocular muscle are substantially lower when examined in vitro. In vitro preparation of 0.58 mm thick extraocular muscle from 3-week-old birds underestimated contractile function, but not of thinner (0.33 mm) muscle from 2-day-old birds. Our study shows that the effective criteria for functional viability, tested in vitro, differ between extraocular and other skeletal muscle. We conclude that contractile force of extraocular muscles will be underestimated by between 10 and 80%, when measurements are made after cessation of blood supply (at 5-40 min). The mechanisms responsible for the declining values for force measurements are discussed, and we make specific recommendations for obtaining valid measurements of contractile force.
Collapse
Affiliation(s)
- Scott A Croes
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | | |
Collapse
|