1
|
Wang C, Feng Y, Patel D, Xie H, Lv Y, Zhao H. The role of CD47 in non-neoplastic diseases. Heliyon 2023; 9:e22905. [PMID: 38125492 PMCID: PMC10731077 DOI: 10.1016/j.heliyon.2023.e22905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
CD47 is a 50 kDa five-spanning membrane receptor that plays a crucial role in multiple cellular processes, including myeloid cell activation, neutrophils transmigration, vascular remodeling, leukocyte adhesion and trans-endothelial migration. Recent studies have revealed that CD47 is a highly expressed anti-phagocytic signal in several types of cancer, and therefore, blocking of CD47 has shown an effective therapeutic potential in cancer immunotherapy. In addition, CD47 has been found to be involved in a complex interplay with microglia and other types of cells, and increasing evidence indicates that CD47 can be targeted as part of immune modulatory strategies for non-neoplastic diseases as well. In this review, we focus on CD47 and its role in non-neoplastic diseases, including neurological disorders, atherosclerosis and autoimmune diseases. In addition, we discuss the major challenges and potential remedies associated with CD47-SIRPα-based immunotherapies.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Ying Feng
- Department of Emergency, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Deepali Patel
- School of Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, Shandong, 266071, China
| | - Hongwei Xie
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Yaqing Lv
- Department of Outpatient, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
2
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
3
|
Beizavi Z, Gheibihayat SM, Moghadasian H, Zare H, Yeganeh BS, Askari H, Vakili S, Tajbakhsh A, Savardashtaki A. The regulation of CD47-SIRPα signaling axis by microRNAs in combination with conventional cytotoxic drugs together with the help of nano-delivery: a choice for therapy? Mol Biol Rep 2021; 48:5707-5722. [PMID: 34275112 DOI: 10.1007/s11033-021-06547-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
CD47, a member of the immunoglobulin superfamily, is an important "Don't Eat-Me" signal in phagocytosis process [clearance of apoptotic cells] as well as a regulator of the adaptive immune response. The lower level of CD47 on the cell surface leads to the clearance of apoptotic cells. Dysregulation of CD47 plays a critical role in the development of disorders, particularly cancers. In cancers, recognition of CD47 overexpression on the surface of cancer cells by its receptor, SIRPα on the phagocytic cells, inhibits phagocytosis of cancer cells. Thus, blocking of CD47-SIRPα signaling axis might be as a promising therapeutic target, which promotes phagocytosis of cancer cells, antigen-presenting cell function as well as adaptive T cell-mediated anti-cancer immunity. In this respect, it has been reported that CD47 expression can be regulated by microRNAs (miRNAs). MiRNAs can regulate phagocytosis of macrophages apoptotic process, drug resistance, relapse of disease, radio-sensitivity, and suppress cell proliferation, migration, and invasion through post-transcriptional regulation of CD47-SIRPα signaling axis. Moreover, the regulation of CD47 expression by miRNAs and combination with conventional cytotoxic drugs together with the help of nano-delivery represent a valuable opportunity for effective cancer treatment. In this review, we review studies that evaluate the role of miRNAs in the regulation of CD47-SIRPα in disorders to achieve a novel preventive, diagnostic, and therapeutic strategy.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Also, kindly confirm the details in the metadata are correct. Confirmed.Journal standard instruction requires a structured abstract; however, none was provided. Please supply an Abstract with subsections..Not confirmed. This is a review article. According to submission guidelines: "The abstract should be presented divided into subheadings (unless it is a mini or full review article)". Kindly check and confirm whether the corresponding authors and mail ID are correctly identified. Confirmed.
Collapse
Affiliation(s)
- Zahra Beizavi
- Department of General Surgery, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hadis Moghadasian
- Laboratory of Common Basic Sciences, Mohammad Rasool Allah Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Zare
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Babak Shirazi Yeganeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Kumar R, Gulia K. The convergence of nanotechnology‐stem cell, nanotopography‐mechanobiology, and biotic‐abiotic interfaces: Nanoscale tools for tackling the top killer, arteriosclerosis, strokes, and heart attacks. NANO SELECT 2021. [DOI: 10.1002/nano.202000192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rajiv Kumar
- NIET National Institute of Medical Science Rajasthan India
| | - Kiran Gulia
- Materials and Manufacturing School of Engineering University of Wolverhampton Wolverhampton England, UK
| |
Collapse
|
5
|
Recent Advancements in CD47 Signal Transduction Pathways Involved in Vascular Diseases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4749135. [PMID: 32733941 PMCID: PMC7378613 DOI: 10.1155/2020/4749135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular and cerebrovascular diseases caused by atherosclerosis have a high disability rate and reduce the quality of life of the population. Therefore, understanding the mechanism of atherosclerosis and its control may interfere with the progression of atherosclerosis and thus control the occurrence of diseases closely related to atherosclerosis. TSP-1 is a factor that has been found to have an antiangiogenic effect, and CD47, as the receptor of TSP-1, can participate in the regulation of antiangiogenesis of atherosclerosis. VEGF is an important regulator of angiogenesis, and TSP-1/CD47 can cause VEGF and its downstream expression. Therefore, the TSP-1/CD47/VEGF/VEGFR2 signal may have an important influence on atherosclerosis. In addition, some inflammatory factors, such as IL-1 and NLRP3, can also affect atherosclerosis. This review will be expounded focusing on the pathogenesis and influencing factors of atherosclerosis.
Collapse
|
6
|
Tajbakhsh A, Kovanen PT, Rezaee M, Banach M, Sahebkar A. Ca 2+ Flux: Searching for a Role in Efferocytosis of Apoptotic Cells in Atherosclerosis. J Clin Med 2019; 8:jcm8122047. [PMID: 31766552 PMCID: PMC6947386 DOI: 10.3390/jcm8122047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
In atherosclerosis, macrophages in the arterial wall ingest plasma lipoprotein-derived lipids and become lipid-filled foam cells with a limited lifespan. Thus, efficient removal of apoptotic foam cells by efferocytic macrophages is vital to preventing the dying foam cells from forming a large necrotic lipid core, which, otherwise, would render the atherosclerotic plaque vulnerable to rupture and would cause clinical complications. Ca2+ plays a role in macrophage migration, survival, and foam cell generation. Importantly, in efferocytic macrophages, Ca2+ induces actin polymerization, thereby promoting the formation of a phagocytic cup necessary for efferocytosis. Moreover, in the efferocytic macrophages, Ca2+ enhances the secretion of anti-inflammatory cytokines. Various Ca2+ antagonists have been seminal for the demonstration of the role of Ca2+ in the multiple steps of efferocytosis by macrophages. Moreover, in vitro and in vivo experiments and clinical investigations have revealed the capability of Ca2+ antagonists in attenuating the development of atherosclerotic plaques by interfering with the deposition of lipids in macrophages and by reducing plaque calcification. However, the regulation of cellular Ca2+ fluxes in the processes of efferocytic clearance of apoptotic foam cells and in the extracellular calcification in atherosclerosis remains unknown. Here, we attempted to unravel the molecular links between Ca2+ and efferocytosis in atherosclerosis and to evaluate cellular Ca2+ fluxes as potential treatment targets in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Halal Research Center of IRI, FDA, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948, Iran
- Correspondence: or ; Tel.: +98-51-1800-2288; Fax: +98-51-1800-2287
| |
Collapse
|