1
|
Mongelli A, Panunzi S, Nesta M, Gottardi Zamperla M, Atlante S, Barbi V, Mongiardini V, Ferraro F, De Martino S, Cis L, Re A, Maltese S, Bachetti T, La Rovere MT, Martelli F, Pesce M, Nanni S, Massetti M, Pontecorvi A, Farsetti A, Gaetano C. Distinguishable DNA methylation defines a cardiac-specific epigenetic clock. Clin Epigenetics 2023; 15:53. [PMID: 36991505 PMCID: PMC10053964 DOI: 10.1186/s13148-023-01467-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/18/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The present study investigates whether epigenetic differences emerge in the heart of patients undergoing cardiac surgery for an aortic valvular replacement (AVR) or coronary artery bypass graft (CABG). An algorithm is also established to determine how the pathophysiological condition might influence the human biological cardiac age. RESULTS Blood samples and cardiac auricles were collected from patients who underwent cardiac procedures: 94 AVR and 289 CABG. The CpGs from three independent blood-derived biological clocks were selected to design a new blood- and the first cardiac-specific clocks. Specifically, 31 CpGs from six age-related genes, ELOVL2, EDARADD, ITGA2B, ASPA, PDE4C, and FHL2, were used to construct the tissue-tailored clocks. The best-fitting variables were combined to define new cardiac- and blood-tailored clocks validated through neural network analysis and elastic regression. In addition, telomere length (TL) was measured by qPCR. These new methods revealed a similarity between chronological and biological age in the blood and heart; the average TL was significantly higher in the heart than in the blood. In addition, the cardiac clock discriminated well between AVR and CABG and was sensitive to cardiovascular risk factors such as obesity and smoking. Moreover, the cardiac-specific clock identified an AVR patient's subgroup whose accelerated bioage correlated with the altered ventricular parameters, including left ventricular diastolic and systolic volume. CONCLUSION This study reports on applying a method to evaluate the cardiac biological age revealing epigenetic features that separate subgroups of AVR and CABG.
Collapse
Affiliation(s)
- A Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
- Center for Translational and Experimental Cardiology (CTEC), University of Zurich, 8952, Schlieren, Switzerland
| | - S Panunzi
- National Research Council (CNR)-IASI, 00185, Rome, Italy
| | - M Nesta
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - M Gottardi Zamperla
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
| | - S Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
| | - V Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
| | - V Mongiardini
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy
- Molecular Medicine, Istituto Italiano di Tecnologia, Genoa, Italy
| | - F Ferraro
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - S De Martino
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - L Cis
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Re
- National Research Council (CNR)-IASI, 00185, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - S Maltese
- National Research Council (CNR)-IRIB, 90146, Palermo, Italy
| | - T Bachetti
- Direzione Scientifica Centrale ICS Maugeri IRCCS, Pavia, Italy
| | - M T La Rovere
- Dipartimento di Cardiologia ICS Maugeri and Direzione Scientifica ICS Maugeri Montescano IRCCS, Pavia, Italy
| | - F Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Milan, Italy
| | - M Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - S Nanni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - M Massetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Pontecorvi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - A Farsetti
- National Research Council (CNR)-IASI, 00185, Rome, Italy.
| | - C Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici (ICS) Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
2
|
Telomere Length: Implications for Atherogenesis. Curr Atheroscler Rep 2023; 25:95-103. [PMID: 36689071 PMCID: PMC9947063 DOI: 10.1007/s11883-023-01082-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The purpose of the study is to explore the evidence linking telomere length with atherosclerotic ischemic disease. RECENT FINDINGS There has been a recent expansion in strategies for measuring telomere length, including analyzing genome sequence data and capitalizing on genomic loci that associate with telomere length. These, together with more established approaches, have been used to generate a more complete picture of telomere length relationships with ischemic disease. Whereas earlier meta-analyses suggested an association between short leukocyte telomeres and ischemic disease, several recent large population studies now provide particularly compelling data, including an association with cardiovascular mortality. In addition, whether short leukocyte telomeres might be causally related to ischemic disease has been interrogated using Mendelian randomization strategies, which point to shorter leukocyte telomeres as a determining risk factor. Importantly however, the wide, interindividual variability in telomere length still means that a single assessment of leukocyte telomere length in an individual does not reliably report on a biological aging process. In this regard, recent multi-tissue analyses of telomere length dynamics are providing both new mechanistic insights into how telomere length and shortening rates may participate in atherogenesis and risk prediction opportunities. The balance of evidence indicates that short leukocyte telomeres confer a risk for atherosclerotic cardiovascular disease. Moreover, an integrated analysis of telomere lengths in leukocytes and other tissues may provide a window into individualized telomere dynamics, raising new prospects for risk management.
Collapse
|
3
|
Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients. Genes (Basel) 2022; 13:genes13101855. [PMID: 36292740 PMCID: PMC9601297 DOI: 10.3390/genes13101855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022] Open
Abstract
Reaching critically short telomeres induces cellular senescence and ultimately cell death. Cellular senescence contributes to the loss of tissue function. We aimed to determine the association between variants within genes involved in telomere length maintenance, posttransplant events, and aortic telomere length in heart transplant patients. DNA was isolated from paired aortic samples of 383 heart recipients (age 50.7 ± 11.9 years) and corresponding donors (age 38.7 ± 12.0 years). Variants within the TERC (rs12696304), TERF2IP (rs3784929 and rs8053257), and OBCF1 (rs4387287) genes were genotyped, and telomere length was measured using qPCR. We identified similar frequencies of genotypes in heart donors and recipients. Antibody-mediated rejection (AMR) was more common (p < 0.05) in carriers of at least one G allele within the TERF2IP locus (rs3784929). Chronic graft dysfunction (CGD) was associated with the TERC (rs12696304) GG donor genotype (p = 0.05). The genetic risk score did not determine posttransplant complication risk prediction. No associations between the analyzed polymorphisms and telomere length were detected in either donor or recipient DNA. In conclusion, possible associations between donor TERF2IP (rs3784929) and AMR and between TERC (rs12696304) and CGD were found. SNPs within the examined genes were not associated with telomere length in transplanted patients.
Collapse
|
4
|
Aronov DM, Drapkina OM, Bubnova MG. Role of genetic factors (biology of telomeres) in cardiac rehabilitation. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cardiac rehabilitation (CR) is one of the effective healthcare types for cardiovascular patients. At the same time, the choice of the most effective CR methods for a particular patient remains a problem. An increasing number of studies are devoted to the application of genetic methods for studying human health. Particular attention is drawn to determining the telomere length. The review purpose was to analyze the literature on various studies on the significance of assessing the chromosome telomeres for characterizing human health and choosing effective CR methods. The article discusses issues related to the relationship between the telomere length and cardiovascular risk factors, dietary pattern, and psychological status of a person. We also assessed the effectiveness of various exercise types at the genetic level. In preparing the review, publications over the past 14 years were searched in the MEDLINE/PubMed, Scopus, Cochrane Library, PEDro, eLIBRARY, and Google Scholar databases. The presented facts indicate the need for further study and effective use of one of the genetic factors protecting chromosome telomeres in CR.
Collapse
Affiliation(s)
- D. M. Aronov
- National Medical Research Center for Therapy and Preventive Medicine
| | - O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - M. G. Bubnova
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
5
|
Boniewska-Bernacka E, Pańczyszyn A, Hobot J, Donizy P, Ziembik Z, Goc A, Klinger M. The Length of Leukocyte and Femoral Artery Telomeres in Patients with Peripheral Atherosclerosis. Genes (Basel) 2022; 13:genes13040704. [PMID: 35456510 PMCID: PMC9030852 DOI: 10.3390/genes13040704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/06/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
The length of telomeres (TLs) that protect chromosome ends may reflect the age of cells as well as the degree of genetic material damage caused by external factors. Since leukocyte telomere length is associated with cardiovascular diseases, the aim of this study was to evaluate whether leukocyte TL reflects femoral artery wall telomeres of patients with atherosclerosis and lower limb ischemia. Samples of femoral artery wall and blood were collected from 32 patients qualified to surgical revascularization. The analysis included blood and artery wall telomere length measurement and biochemical parameters. The study indicated that there was a moderate correlation between artery wall TL and leukocyte TL. Leukocyte TL was, on average, two times shorter than artery wall TL and correlated with the number of white blood cells. In turn, artery TL was impacted by total cholesterol level. The results suggest that the length of leukocyte telomeres may reflect artery wall TL and indirectly reflect the processes taking place in the artery wall in patients with atherosclerosis.
Collapse
Affiliation(s)
- Ewa Boniewska-Bernacka
- Medical Department, Institute of Medical Sciences, University of Opole, ul. Oleska 48, 45-052 Opole, Poland; (A.P.); (J.H.); (A.G.); (M.K.)
- Correspondence:
| | - Anna Pańczyszyn
- Medical Department, Institute of Medical Sciences, University of Opole, ul. Oleska 48, 45-052 Opole, Poland; (A.P.); (J.H.); (A.G.); (M.K.)
| | - Jacek Hobot
- Medical Department, Institute of Medical Sciences, University of Opole, ul. Oleska 48, 45-052 Opole, Poland; (A.P.); (J.H.); (A.G.); (M.K.)
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Zbigniew Ziembik
- Institute of Environmental Engineering and Biotechnology, University of Opole, 45-032 Opole, Poland;
| | - Anna Goc
- Medical Department, Institute of Medical Sciences, University of Opole, ul. Oleska 48, 45-052 Opole, Poland; (A.P.); (J.H.); (A.G.); (M.K.)
| | - Marian Klinger
- Medical Department, Institute of Medical Sciences, University of Opole, ul. Oleska 48, 45-052 Opole, Poland; (A.P.); (J.H.); (A.G.); (M.K.)
| |
Collapse
|
6
|
Yegorov YE, Poznyak AV, Nikiforov NG, Starodubova AV, Orekhov AN. Role of Telomeres Shortening in Atherogenesis: An Overview. Cells 2021; 10:395. [PMID: 33671887 PMCID: PMC7918954 DOI: 10.3390/cells10020395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/07/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
It is known that the shortening of the telomeres leads to cell senescence, accompanied by acquiring of pro-inflammatory phenotype. The expression of telomerase can elongate telomeres and resist the onset of senescence. The initiation of atherosclerosis is believed to be associated with local senescence of the endothelial cells of the arteries in places with either low or multidirectional oscillatory wall shear stress. The process of regeneration of the artery surface that has begun does not lead to success for several reasons. Atherosclerotic plaques are formed, which, when developed, lead to fatal consequences, which are the leading causes of death in the modern world. The pronounced age dependence of the manifestations of atherosclerosis pushes scientists to try to link the development of atherosclerosis with telomere length. The study of the role of telomere shortening in atherosclerosis is mainly limited to measuring the telomeres of blood cells, and only in rare cases (surgery or post-mortem examination) are the telomeres of local cells available for measurement. The review discusses the basic issues of cellular aging and the interpretation of telomere measurement data in atherosclerosis, as well as the prospects for the prevention and possible treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yegor E. Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Nikita G. Nikiforov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow 121552, Russia
- Institute of Gene Biology, Center of Collective Usage, Moscow 119334, Russia
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, Moscow 109240, Russia;
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow 125315, Russia;
- Institute of Human Morphology, Moscow 117418, Russia
| |
Collapse
|
7
|
Telomeres and telomerase in risk assessment of cardiovascular diseases. Exp Cell Res 2020; 397:112361. [PMID: 33171154 DOI: 10.1016/j.yexcr.2020.112361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/02/2020] [Indexed: 01/14/2023]
Abstract
Telomeres are repetitive nucleoprotein structures located at the ends of chromosomes. Reduction in the number of repetitions causes cell senescence. Cells with high proliferative potential age with each replication cycle. Post-mitotic cells (e.g. cardiovascular cells) have a different aging mechanism. During the aging of cardiovascular system cells, permanent DNA damage occurs in the telomeric regions caused by mitochondrial dysfunction, which is a phenomenon independent of cell proliferation and telomere length. Mitochondrial dysfunction is accompanied by increased production of reactive oxygen species and development of inflammation. This phenomenon in the cells of blood vessels can lead to atherosclerosis development. Telomere damage in cardiomyocytes leads to the activation of the DNA damage response system, histone H2A.X phosphorylation, p53 activation and p21 and p16 protein synthesis, resulting in the SASP phenotype (senescence-associated secretory phenotype), increased inflammation and cardiac dysfunction. Cardiovascular cells show the activity of the TERT subunit of telomerase, an enzyme that prevents telomere shortening. It turns out that disrupting the activity of this enzyme can also contribute to the formation of cardiovascular diseases. Measurements of telomere length according to the "blood-muscle" model may help in the future to assess the risk of cardiovascular complications in people undergoing cardiological procedures, as well as to assess the effectiveness of some drugs.
Collapse
|
8
|
Yeh JK, Lin MH, Wang CY. Telomeres as Therapeutic Targets in Heart Disease. ACTA ACUST UNITED AC 2019; 4:855-865. [PMID: 31998853 PMCID: PMC6978555 DOI: 10.1016/j.jacbts.2019.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
Age-associated CVDs impose a great burden on current health systems. Despite the fact that current strong evidence supports the links among aging, telomere attrition, and CVDs, there is no clear direction for the development of telomere therapeutics against CVDs. This review focuses on immune modulation, CHIP, pharmaceutical interventions, and gene therapy for their therapeutic roles in age-associated CVDs. The future goal of telomere cardiovascular therapy in young subjects is to prevent senescence and diseases, whereas in older adult subjects, the goal is restoration of cardiovascular functions. Further studies on the telomere-CHIP-atherosclerosis axis may shed insights on how to achieve these 2 different therapeutic targets.
Telomeres are double-stranded repeats of G-rich tandem DNA sequences that gradually shorten with each cell division. Aging, inflammation, and oxidative stress accelerate the process of telomere shortening. Telomerase counteracts this process by maintaining and elongating the telomere length. Patients with atherosclerotic diseases and cardiovascular risk factors (e.g., smoking, obesity, sedentary lifestyle, and hypertension) have shorter leukocyte telomere length. Following myocardial infarction, telomerase expression and activity in cardiomyocytes and endothelial cells increase significantly, implying that telomerase plays a role in regulating tissue repairs in heart diseases. Although previous studies have focused on the changes of telomeres in heart diseases and the telomere length as a marker for aging cardiovascular systems, recent studies have explored the potential of telomeres and telomerase in the treatment of cardiovascular diseases. This review discusses the significant advancements of telomere therapeutics in gene therapy, atherosclerosis, anti-inflammation, and immune modulation in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Mei-Hsiu Lin
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan
| | - Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan City, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
9
|
Dlouha D, Vymetalova J, Hubacek JA, Lanska V, Malek I. Association between aortic telomere length and cardiac post-transplant allograft function. Int J Cardiol 2019; 290:129-133. [PMID: 31101542 DOI: 10.1016/j.ijcard.2019.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND In patients having undergone orthotopic heart transplantation, a number of complications exist that are known to be connected to both telomerase activity and telomere length. The aim of this study was to determine how telomere length in aortic DNA correlates with the subsequent post-transplantation development of the patients. MATERIALS AND METHODS Between 2005 and 2015, we collected aortic samples from 376 heart recipients (age 50.8 ± 11.8 years) and 383 donors (age 38.6 ± 12.2 years). Relative telomere length in aortic tissue DNA was determined using quantitative PCR. RESULTS Shorter telomere length was detected in heart allograft recipients compared to donors (P < 0.0001). Patients suffering acute cellular rejection had significantly shorter telomere length (P < 0.01) than patients without rejection. Shorter telomere length was observed in patients with implanted mechanical circulatory support before heart transplantation (P < 0.03), as well as in subjects with cardiac allograft vasculopathy (P < 0.05). Overall survival time after heart transplantation was associated with shorter donor telomeres (P < 0.004). CONCLUSIONS Telomere length differed between donors and recipients independent of the sex and age of the patients. Our findings suggest a potential new linkage between the aortic telomere length of recipients and post-heart transplant complications. Further studies focusing on epigenetic modifications and gene regulation involved in telomere maintenance in transplanted patients should verify our results.
Collapse
Affiliation(s)
- Dana Dlouha
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic.
| | - Jevgenija Vymetalova
- Cardio Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| | - Jaroslav A Hubacek
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| | - Vera Lanska
- Statistical Unit, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| | - Ivan Malek
- Cardio Centre, Institute for Clinical and Experimental Medicine, Videnska 1958/9, Prague 14021, Czech Republic
| |
Collapse
|