Yeh JK, Lin MH, Wang CY. Telomeres as Therapeutic Targets in Heart Disease.
ACTA ACUST UNITED AC 2019;
4:855-865. [PMID:
31998853 PMCID:
PMC6978555 DOI:
10.1016/j.jacbts.2019.05.009]
[Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022]
Abstract
Age-associated CVDs impose a great burden on current health systems. Despite the fact that current strong evidence supports the links among aging, telomere attrition, and CVDs, there is no clear direction for the development of telomere therapeutics against CVDs.
This review focuses on immune modulation, CHIP, pharmaceutical interventions, and gene therapy for their therapeutic roles in age-associated CVDs.
The future goal of telomere cardiovascular therapy in young subjects is to prevent senescence and diseases, whereas in older adult subjects, the goal is restoration of cardiovascular functions. Further studies on the telomere-CHIP-atherosclerosis axis may shed insights on how to achieve these 2 different therapeutic targets.
Telomeres are double-stranded repeats of G-rich tandem DNA sequences that gradually shorten with each cell division. Aging, inflammation, and oxidative stress accelerate the process of telomere shortening. Telomerase counteracts this process by maintaining and elongating the telomere length. Patients with atherosclerotic diseases and cardiovascular risk factors (e.g., smoking, obesity, sedentary lifestyle, and hypertension) have shorter leukocyte telomere length. Following myocardial infarction, telomerase expression and activity in cardiomyocytes and endothelial cells increase significantly, implying that telomerase plays a role in regulating tissue repairs in heart diseases. Although previous studies have focused on the changes of telomeres in heart diseases and the telomere length as a marker for aging cardiovascular systems, recent studies have explored the potential of telomeres and telomerase in the treatment of cardiovascular diseases. This review discusses the significant advancements of telomere therapeutics in gene therapy, atherosclerosis, anti-inflammation, and immune modulation in patients with cardiovascular diseases.
Collapse