1
|
Orgil BO, Chintanaphol M, Alberson NR, Letourneau L, Martinez HR, Towbin JA, Purevjav E. Animal Models for Mechanical Circulatory Support: A Research Review. Rev Cardiovasc Med 2024; 25:351. [PMID: 39484122 PMCID: PMC11522838 DOI: 10.31083/j.rcm2510351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 11/03/2024] Open
Abstract
Heart failure is a clinical syndrome that has become a leading public health problem worldwide. Globally, nearly 64 million individuals are currently affected by heart failure, causing considerable medical, financial, and social challenges. One therapeutic option for patients with advanced heart failure is mechanical circulatory support (MCS) which is widely used for short-term or long-term management. MCS with various ventricular assist devices (VADs) has gained traction in end-stage heart failure treatment as a bridge-to-recovery, -decision, -transplant or -destination therapy. Due to limitations in studying VADs in humans, animal studies have substantially contributed to the development and advancement of MCS devices. Large animals have provided an avenue for developing and testing new VADs and improving surgical strategies for VAD implantation and for evaluating the effects and complications of MCS on hemodynamics and organ function. VAD modeling by utilizing rodents and small animals has been successfully implemented for investigating molecular mechanisms of cardiac unloading after the implantation of MCS. This review will cover the animal research that has resulted in significant advances in the development of MCS devices and the therapeutic care of advanced heart failure.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Michelle Chintanaphol
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | | | - Hugo R. Martinez
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Enkhsaikhan Purevjav
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
2
|
Weymann A, Foroughi J, Vardanyan R, Punjabi PP, Schmack B, Aloko S, Spinks GM, Wang CH, Arjomandi Rad A, Ruhparwar A. Artificial Muscles and Soft Robotic Devices for Treatment of End-Stage Heart Failure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207390. [PMID: 36269015 DOI: 10.1002/adma.202207390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/13/2022] [Revised: 09/19/2022] [Indexed: 05/12/2023]
Abstract
Medical soft robotics constitutes a rapidly developing field in the treatment of cardiovascular diseases, with a promising future for millions of patients suffering from heart failure worldwide. Herein, the present state and future direction of artificial muscle-based soft robotic biomedical devices in supporting the inotropic function of the heart are reviewed, focusing on the emerging electrothermally artificial heart muscles (AHMs). Artificial muscle powered soft robotic devices can mimic the action of complex biological systems such as heart compression and twisting. These artificial muscles possess the ability to undergo complex deformations, aiding cardiac function while maintaining a limited weight and use of space. Two very promising candidates for artificial muscles are electrothermally actuated AHMs and biohybrid actuators using living cells or tissue embedded with artificial structures. Electrothermally actuated AHMs have demonstrated superior force generation while creating the prospect for fully soft robotic actuated ventricular assist devices. This review will critically analyze the limitations of currently available devices and discuss opportunities and directions for future research. Last, the properties of the cardiac muscle are reviewed and compared with those of different materials suitable for mechanical cardiac compression.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Javad Foroughi
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Robert Vardanyan
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Prakash P Punjabi
- Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, 72 Du Cane Rd, London, W12 0HS, UK
| | - Bastian Schmack
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Sinmisola Aloko
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Arian Arjomandi Rad
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| |
Collapse
|
3
|
Rusu DM, Mândru SD, Biriș CM, Petrașcu OL, Morariu F, Ianosi-Andreeva-Dimitrova A. Soft Robotics: A Systematic Review and Bibliometric Analysis. MICROMACHINES 2023; 14:mi14020359. [PMID: 36838059 PMCID: PMC9961507 DOI: 10.3390/mi14020359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/23/2023] [Indexed: 05/14/2023]
Abstract
In recent years, soft robotics has developed considerably, especially since the year 2018 when it became a hot field among current research topics. The attention that this field receives from researchers and the public is marked by the substantial increase in both the quantity and the quality of scientific publications. In this review, in order to create a relevant and comprehensive picture of this field both quantitatively and qualitatively, the paper approaches two directions. The first direction is centered on a bibliometric analysis focused on the period 2008-2022 with the exact expression that best characterizes this field, which is "Soft Robotics", and the data were taken from a series of multidisciplinary databases and a specialized journal. The second direction focuses on the analysis of bibliographic references that were rigorously selected following a clear methodology based on a series of inclusion and exclusion criteria. After the selection of bibliographic sources, 111 papers were part of the final analysis, which have been analyzed in detail considering three different perspectives: one related to the design principle (biologically inspired soft robotics), one related to functionality (closed/open-loop control), and one from a biomedical applications perspective.
Collapse
Affiliation(s)
- Dan-Mihai Rusu
- Mechatronics and Machine Dynamics Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
- Correspondence:
| | - Silviu-Dan Mândru
- Mechatronics and Machine Dynamics Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina-Maria Biriș
- Department of Industrial Machines and Equipment, Engineering Faculty, Lucian Blaga University of Sibiu, Victoriei 10, 550024 Sibiu, Romania
| | - Olivia-Laura Petrașcu
- Department of Industrial Machines and Equipment, Engineering Faculty, Lucian Blaga University of Sibiu, Victoriei 10, 550024 Sibiu, Romania
| | - Fineas Morariu
- Department of Industrial Machines and Equipment, Engineering Faculty, Lucian Blaga University of Sibiu, Victoriei 10, 550024 Sibiu, Romania
| | | |
Collapse
|
4
|
Coles L, Oluwasanya PW, Karam N, Proctor CM. Fluidic enabled bioelectronic implants: opportunities and challenges. J Mater Chem B 2022; 10:7122-7131. [PMID: 35959561 PMCID: PMC9518646 DOI: 10.1039/d2tb00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Bioelectronic implants are increasingly facilitating novel strategies for clinical diagnosis and treatment. The integration of fluidic technologies into such implants enables new complementary routes for sensing and therapy alongside electrical interaction. Indeed, these two technologies, electrical and fluidic, can work synergistically in a bioelectronics implant towards the fabrication of a complete therapeutic platform. In this perspective article, the leading applications of fluidic enabled bioelectronic implants are highlighted and methods of operation and material choices are discussed. Furthermore, a forward-looking perspective is offered on emerging opportunities as well as critical materials and technological challenges.
Collapse
Affiliation(s)
- Lawrence Coles
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Pelumi W Oluwasanya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Nuzli Karam
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Christopher M Proctor
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Bonnemain J, Del Nido PJ, Roche ET. Direct Cardiac Compression Devices to Augment Heart Biomechanics and Function. Annu Rev Biomed Eng 2022; 24:137-156. [PMID: 35395165 DOI: 10.1146/annurev-bioeng-110220-025309] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
The treatment of end-stage heart failure has evolved substantially with advances in medical treatment, cardiac transplantation, and mechanical circulatory support (MCS) devices such as left ventricular assist devices and total artificial hearts. However, current MCS devices are inherently blood contacting and can lead to potential complications including pump thrombosis, hemorrhage, stroke, and hemolysis. Attempts to address these issues and avoid blood contact led to the concept of compressing the failing heart from the epicardial surface and the design of direct cardiac compression (DCC) devices. We review the fundamental concepts related to DCC, present the foundational devices and recent devices in the research and commercialization stages, and discuss the milestones required for clinical translation and adoption of this technology. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jean Bonnemain
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Adult Intensive Care Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland;
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Massachusetts, USA;
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Mechanical Engineering and Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
6
|
Perez-Guagnelli E, Jones J, D. Damian D. Hyperelastic Membrane Actuators: Analysis of Toroidal and Helical Multifunctional Configurations. CYBORG AND BIONIC SYSTEMS 2022; 2022:9786864. [PMID: 36285311 PMCID: PMC9494722 DOI: 10.34133/2022/9786864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2020] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Technologies that provide mechanical assistance are required in the medical field, such as implants that regenerate tissue through elongation and stimulation. One of the challenges is to develop actuators that combine the benefits of high axial extension at low pressures, modularity, multifunction, and load-bearing capabilities into one design while maintaining their shape and softness. Overcoming such a challenge will provide implants with enhanced capacity for mechanical assistance to induce tissue regeneration. We introduce two novel actuators (M2H) built of stacked Hyperelastic Ballooning Membrane Actuators (HBMAs) that can be realized using helical and toroidal configurations. By restraining the HBMA expansion deterministically using a semisoft exoskeleton, the actuators are endowed with axial extension and radial expansion capabilities. These actuators are thus built of modules that can be configured to different therapeutical needs and multifunctionality, to provide anatomically congruent stimulation. We present the design, fabrication, testing, and numerical and experimental validation of the M2H-HBMAs. They can axially extend up to 41% and 32% in their helical and toroidal configurations at input pressures as low as 26 and 24 kPa, respectively. If the axial extension module is used separately, its extension capacity reaches >170%. The M2H-HBMAs can perform independent and simultaneous expansion and extension motions with negligible intraluminal deformation as well as stand at least 1 kg of axial force without collapsing. The M2H-HBMAs overcome the limitations of hyperexpanding machines that show low resistance to load. We envisage M2H-HBMAs as promising tools to perform tissue regeneration procedures.
Collapse
Affiliation(s)
| | - Joanna Jones
- Department of Automatic Control and Systems Engineering, University of Sheffield, UK
| | - Dana D. Damian
- Department of Automatic Control and Systems Engineering, University of Sheffield, UK
| |
Collapse
|
7
|
Garcia L, Kerns G, O'Reilley K, Okesanjo O, Lozano J, Narendran J, Broeking C, Ma X, Thompson H, Njapa Njeuha P, Sikligar D, Brockstein R, Golecki HM. The Role of Soft Robotic Micromachines in the Future of Medical Devices and Personalized Medicine. MICROMACHINES 2021; 13:28. [PMID: 35056193 PMCID: PMC8781893 DOI: 10.3390/mi13010028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/03/2021] [Revised: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
Developments in medical device design result in advances in wearable technologies, minimally invasive surgical techniques, and patient-specific approaches to medicine. In this review, we analyze the trajectory of biomedical and engineering approaches to soft robotics for healthcare applications. We review current literature across spatial scales and biocompatibility, focusing on engineering done at the biotic-abiotic interface. From traditional techniques for robot design to advances in tunable material chemistry, we look broadly at the field for opportunities to advance healthcare solutions in the future. We present an extracellular matrix-based robotic actuator and propose how biomaterials and proteins may influence the future of medical device design.
Collapse
Affiliation(s)
- Lourdes Garcia
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Genevieve Kerns
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Kaitlin O'Reilley
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Omolola Okesanjo
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jacob Lozano
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jairaj Narendran
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Conor Broeking
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaoxiao Ma
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah Thompson
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Preston Njapa Njeuha
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Drashti Sikligar
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Reed Brockstein
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Holly M Golecki
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Wamala I, Payne CJ, Saeed MY, Bautista-Salinas D, Van Story D, Thalhofer T, Staffa SJ, Ghelani SJ, Del Nido PJ, Walsh CJ, Vasilyev NV. Importance of Preserved Tricuspid Valve Function for Effective Soft Robotic Augmentation of the Right Ventricle in Cases of Elevated Pulmonary Artery Pressure. Cardiovasc Eng Technol 2021; 13:120-128. [PMID: 34263419 PMCID: PMC8888489 DOI: 10.1007/s13239-021-00562-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/20/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022]
Abstract
Purpose In clinical practice, many patients with right heart failure (RHF) have elevated pulmonary artery pressures and increased afterload on the right ventricle (RV). In this study, we evaluated the feasibility of RV augmentation using a soft robotic right ventricular assist device (SRVAD), in cases of increased RV afterload. Methods In nine Yorkshire swine of 65–80 kg, a pulmonary artery band was placed to cause RHF and maintained in place to simulate an ongoing elevated afterload on the RV. The SRVAD was actuated in synchrony with the ventricle to augment native RV output for up to one hour. Hemodynamic parameters during SRVAD actuation were compared to baseline and RHF levels. Results Median RV cardiac index (CI) was 1.43 (IQR, 1.37–1.80) L/min/m2 and 1.26 (IQR 1.05–1.57) L/min/m2 at first and second baseline. Upon PA banding RV CI fell to a median of 0.79 (IQR 0.63–1.04) L/min/m2. Device actuation improved RV CI to a median of 0.87 (IQR 0.78–1.01), 0.85 (IQR 0.64–1.59) and 1.11 (IQR 0.67–1.48) L/min/m2 at 5 min (p = 0.114), 30 min (p = 0.013) and 60 (p = 0.033) minutes respectively. Statistical GEE analysis showed that lower grade of tricuspid regurgitation at time of RHF (p = 0.046), a lower diastolic pressure at RHF (p = 0.019) and lower mean arterial pressure at RHF (p = 0.024) were significantly associated with higher SRVAD effectiveness. Conclusions Short-term augmentation of RV function using SRVAD is feasible even in cases of elevated RV afterload. Moderate or severe tricuspid regurgitation were associated with reduced device effectiveness. Supplementary Information The online version contains supplementary material available at 10.1007/s13239-021-00562-7
Collapse
Affiliation(s)
- Isaac Wamala
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA. .,Clinic for Cardiovascular Surgery, Charité Universitätsmedizin, Berlin, Germany.
| | - Christopher J Payne
- Wyss Institute for Biologically Inspired Engineering, Boston, USA.,Harvard School of Engineering and Applied Sciences, Boston, USA
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Daniel Bautista-Salinas
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.,Industrial Engineering, Technical University of Cartagena, Murcia, Spain
| | - David Van Story
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | | | - Steven J Staffa
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, USA
| | - Sunil J Ghelani
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Conor J Walsh
- Wyss Institute for Biologically Inspired Engineering, Boston, USA.,Harvard School of Engineering and Applied Sciences, Boston, USA
| | - Nikolay V Vasilyev
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| |
Collapse
|
9
|
Bautista-Salinas D, Hammer PE, Payne CJ, Wamala I, Saeed M, Thalhofer T, del Nido PJ, Walsh CJ, Vasilyev NV. Synchronization of a Soft Robotic Ventricular Assist Device to the Native Cardiac Rhythm Using an Epicardial Electrogram. J Med Device 2020. [DOI: 10.1115/1.4047114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022] Open
Abstract
Abstract
Soft robotic devices have been proposed as an alternative solution for ventricular assistance. Unlike conventional ventricular assist devices (VADs) that pump blood through an artificial lumen, soft robotic VADs (SRVADs) use pneumatic artificial muscles (PAM) to assist native contraction and relaxation of the ventricle. Synchronization of SRVADs is critical to ensure maximized and physiologic cardiac output. We developed a proof-of-concept synchronization algorithm that uses an epicardial electrogram as an input signal and evaluated the approach on adult Yorkshire pigs (n = 2). An SRVAD previously developed by our group was implanted on the right ventricle (RV). We demonstrated an improvement in the synchronization of the SRVAD using an epicardial electrogram signal versus a RV pressure signal of 4 ± 0.5% in heart failure and 3.2 ± 0.5% during actuation for animal 1 and 7.4 ± 0.6% in heart failure and 8.2% ± 0.8% during actuation for animal 2. Results suggest that improved synchronization is translated in greater cardiac output. The pulmonary artery (PA) flow was restored to a 107% and 106% of the healthy baseline during RV electrogram actuation and RV pressure actuation, respectively, in animal 1, and to a 100% and 87% in animal 2. Therefore, the presented system using the RV electrogram signal as a control input has shown to be superior in comparison with the use of the RV pressure signal.
Collapse
Affiliation(s)
| | - Peter E. Hammer
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA 02115
| | - Christopher J. Payne
- John A. Paulson Harvard School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, MA 02138
| | - Isaac Wamala
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA 02115
| | - Mossab Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA 02115
| | - Thomas Thalhofer
- John A. Paulson Harvard School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, MA 02138
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, MA 02115
| | - Conor J. Walsh
- John A. Paulson Harvard School of Engineering and Applied Sciences, Wyss Institute for Biologically Inspired Engineering, Harvard University, MA 02138
| | - Nikolay V. Vasilyev
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Enders 1330, 300 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
10
|
Gu H, Bertrand T, Boehler Q, Chautems C, Vasilyev NV, Nelson BJ. Magnetically Active Cardiac Patches as an Untethered, Non-Blood Contacting Ventricular Assist Device. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2000726. [PMID: 33437567 PMCID: PMC7788498 DOI: 10.1002/advs.202000726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/26/2020] [Revised: 05/20/2020] [Indexed: 05/03/2023]
Abstract
Patients suffering from heart failure often require circulatory support using ventricular assist devices (VADs). However, most existing VADs provide nonpulsatile flow, involve direct contact between the blood flow and the device's lumen and moving components, and require a driveline to connect to an external power source. These design features often lead to complications such as gastrointestinal bleeding, device thrombosis, and driveline infections. Here, a concept of magnetically active cardiac patches (MACPs) that can potentially function as non-blood contacting, untethered pulsatile VADs inside a magnetic actuationsystem is reported. The MACPs, which are composed of permanent magnets and 3D-printed patches, are attached to the epicardial surfaces, thus avoiding direct contact with the blood flow. They provide powerful actuation assisting native heart pumping inside a magnetic actuation system. In ex vivo experiments on a healthy pig's heart, it is shown that the ventricular ejection fractions are as high as 37% in the left ventricle and 63% in the right ventricle. Non-blood contacting, untethered VADs can eliminate the risk of serious complications associated with existing devices, and provide an alternative solution for myocardial training and therapy for patients with heart failure.
Collapse
Affiliation(s)
- Hongri Gu
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Thibaud Bertrand
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Quentin Boehler
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Christophe Chautems
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| | - Nikolay V. Vasilyev
- Department of Cardiac SurgeryBoston Children's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Bradley J. Nelson
- Institute of Robotics and Intelligent SystemsETH ZurichZurichCH‐8092Switzerland
| |
Collapse
|