1
|
Meche V, Kundnani NR, Sharma A, Căpăstraru FM, Nistor D, Sarau CA, Gaita L. Cardio-Renal Syndrome: Latest Developments in Device-Based Therapy. J Clin Med 2024; 13:7814. [PMID: 39768738 PMCID: PMC11677936 DOI: 10.3390/jcm13247814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Cardio-renal syndrome (CRS) is a complex condition involving bidirectional dysfunction of the heart and kidneys, in which the failure of one organ exacerbates failure in the other. Traditional pharmacologic treatments are often insufficient to manage the hemodynamic and neurohormonal abnormalities underlying CRS, especially in cases resistant to standard therapies. Device-based therapies have emerged as a promising adjunct or alternative approach, offering targeted intervention to relieve congestion, improve renal perfusion, and modulate hemodynamics. This study aimed to evaluate the efficacy and safety of various device-based therapies in CRS management, utilizing DRI2P2S classification to categorize interventions as dilators, reducers, interstitial modulators, pullers, pushers, and shifters. Methods: A comprehensive analysis of clinical trial data and observational studies involving device-based therapies in patients with CRS was conducted, with a focus on hemodynamic endpoints, renal and cardiac function, symptom relief, and adverse events. Devices included in the analysis were splanchnic denervation systems (dilators), devices for central and pulmonary pressure reduction (reducers), and systems targeting interstitial fluid (fluid shifters), among others. A systematic literature review from 2004 to 2024 was performed using databases including PubMed, Embase, and ClinicalTrials.gov, following PRISMA guidelines for study selection. Data were extracted on patient demographics, device type, trial design, outcomes, and follow-up duration. Results: Device-based therapies demonstrated varying levels of efficacy in CRS, with significant improvements observed in specific parameters. Notable results were a reduction in central venous pressure and improved diuretic responsiveness in acute CRS cases, while also stabilizing or improving renal function. Other relevant endpoints were fewer heart failure hospitalizations and a reduction in renal adverse events, reduced tissue congestion and improved quality of life scores. However, some devices presented challenges, including procedure-related complications and a learning curve for optimal device implantation. Conclusions: Device-based therapies offer a valuable addition to the CRS treatment paradigm, particularly in cases unresponsive to conventional diuretics and other pharmacologic measures. Each of them addresses specific pathophysiological components of CRS and shows promise in improving clinical outcomes. Nevertheless, further large-scale, long-term trials with comprehensive endpoints are needed to establish these therapies' roles in standard care and to optimize patient selection criteria. Enhanced understanding of device mechanisms and refinement of trial endpoints will be key to maximizing the impact of these therapies on quality of life and clinical outcomes for CRS patients.
Collapse
Affiliation(s)
- Vlad Meche
- Doctoral School, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Nilima Rajpal Kundnani
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.); (A.S.)
- Research Centre of Timisoara Institute of Cardiovascular Diseases, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Abhinav Sharma
- University Clinic of Internal Medicine and Ambulatory Care, Prevention and Cardiovascular Recovery, Department VI—Cardiology, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania; (N.R.K.); (A.S.)
| | - Flavia-Maria Căpăstraru
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 3000041 Timisoara, Romania
| | - Daciana Nistor
- Department of Functional Sciences, Physiology, Center of Immuno-Physiology and Biotechnologies (CIFBIOTEH), “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Centre for Gene and Cellular Therapies in Cancer, 300723 Timisoara, Romania
| | - Cristian Andrei Sarau
- Department of Medical Semiology I, “Victor Babes” University of Medicine and Pharmacy, 300041 Timişoara, Romania
- Municipality University Emergency Hospital, 300254 Timisoara, Romania
| | - Laura Gaita
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
- “Pius Brînzeu” Emergency County Hospital, 300723 Timisoara, Romania
| |
Collapse
|
2
|
Sohal S, Uppal D, Mathai SV, Wats K, Uppal NN. Acute Cardiorenal Syndrome: An Update. Cardiol Rev 2024; 32:489-498. [PMID: 36883827 DOI: 10.1097/crd.0000000000000532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The complex dynamic pathophysiological interplay between the heart and kidney causes a vicious cycle of worsening renal and/or cardiovascular function. Acute decompensated heart failure causing worsening renal function defines Type 1 cardiorenal syndrome (CRS). Altered hemodynamics coupled with a multitude of nonhemodynamic factors namely pathological activation of the renin angiotensin aldosterone system and systemic inflammatory pathways mechanistically incite CRS type 1. A multipronged diagnostic approach utilizing laboratory markers, noninvasive and/or invasive modalities must be implemented to enable timely initiation of effective treatment strategies. In this review, we discuss the pathophysiology, diagnosis, and emerging treatment options for CRS type 1.
Collapse
Affiliation(s)
- Sumit Sohal
- From the Division of Cardiovascular Diseases, Department of Medicine, RWJ-BH Newark Beth Israel Medical Center, Newark, NJ
| | - Dipan Uppal
- Department of Cardiovascular Diseases, Cleveland Clinic Florida, Weston, FL
| | | | - Karan Wats
- Division of Cardiovascular Diseases, Department of Medicine, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY
| | - Nupur N Uppal
- Division of Kidney Diseases and Hypertension, Department of Medicine, Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY
| |
Collapse
|
3
|
Nawrocka-Millward S, Biegus J, Fudim M, Guzik M, Iwanek G, Ponikowski P, Zymliński R. The role of urine chloride in acute heart failure. Sci Rep 2024; 14:14100. [PMID: 38890417 PMCID: PMC11189561 DOI: 10.1038/s41598-024-64747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
In our retrospective study, we aimed to investigate the relationship between urinary chloride (uCl-) and selected clinical and laboratory biomarkers, renal function, and patient outcomes in the acute heart failure (AHF) population. We divided 248 adult patients (≥ 18 years) with AHF into two groups: low uCl- (< 115 mmol/L) and high uCl-. The mean age of the patient group was 70.2 ± 12.6, and 182 patients were male (73.4%). Clinical endpoints included in-hospital mortality, one-year mortality, and a composite endpoint of one-year mortality and rehospitalization for heart failure. Patients were followed up for at least one year. Relevant clinical and baseline biomarker data were collected, including markers concerning inflammation, liver and kidney function, perfusion and congestion, iron status, cardiac remodeling, gasometry, renin and aldosterone. Low uCl- was associated with worse in-hospital outcomes, including higher in-hospital mortality (7.7% vs. 1.4%, p = 0.014), the need for inotropic support (20.19% vs. 2.08%, p ≤ 0.001), worsening of HF during therapy (17.31% vs. 4.86%, p ≤ 0.001), and the need for treatment in an intensive cardiac care unit (33.65% vs. 15.28%, p ≤ 0.001). Low uCl- was a significant predictor of one-year mortality (40.4% vs. 16.7%, p < 0.05) and the composite outcome (HR 2.42, 95% CI 1.43-4.08, p < 0.001). In the multivariable analysis, uCl- was independently associated with the risk of one-year mortality (HR 0.92, 95% CI 0.87-0.98, p < 0.05) and the composite outcome (HR 0.95, 95% CI 0.92-0.99, p < 0.05). Our findings suggest that low uCl- is a marker of more advanced heart failure, activation of the renin-angiotensin-aldosterone system and is related to worse one-year outcomes.
Collapse
Affiliation(s)
| | - Jan Biegus
- University Clinical Hospital, Wroclaw, Poland
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Marat Fudim
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Division of Cardiology, Duke University Medical Center, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Mateusz Guzik
- University Clinical Hospital, Wroclaw, Poland
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Gracjan Iwanek
- University Clinical Hospital, Wroclaw, Poland
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Ponikowski
- University Clinical Hospital, Wroclaw, Poland
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Robert Zymliński
- University Clinical Hospital, Wroclaw, Poland
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Chouairi F, Levin A, Biegus J, Fudim M. Emerging devices for heart failure management. Prog Cardiovasc Dis 2024; 82:125-134. [PMID: 38242194 DOI: 10.1016/j.pcad.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
There have been significant advances in the treatment of heart failure (HF) in recent years, driven by significant strides in guideline-directed medical therapy (GDMT). Despite this, HF is still associated with high levels of morbidity and mortality, and most patients do not receive optimal medical therapy. In conjunction with the improvement of GDMT, novel device therapies have been developed to better treat HF. These devices include technology capable of remotely monitoring HF physiology, devices that modulate the autonomic nervous system, and those that structurally change the heart with the ultimate aim of addressing the root causes of HF physiology As these device therapies gradually integrate into the fabric of HF patient care, it becomes increasingly important for modern cardiologists to become familiar with them. Hence, the objective of this review is to shed light on currently emerging devices for the treatment of HF.
Collapse
Affiliation(s)
- Fouad Chouairi
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Allison Levin
- Division of Cardiology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Marat Fudim
- Division of Cardiology, Department of Internal Medicine, Duke University School of Medicine, Durham, NC, USA; Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland; Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
5
|
Khan MS, Paracha AA, Biegus J, Espriella RDL, Núñez J, Santos-Gallego CG, Yaranov D, Fudim M. Preload Reduction Therapies in Heart Failure. Heart Fail Clin 2024; 20:71-81. [PMID: 37953023 DOI: 10.1016/j.hfc.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Preload reserve represents an important concept in the normal physiologic responses of the body to meet the changing metabolic demands. The recruitment of preload in healthy patients leads to an increase in effective circulating blood volume with a concomitant increase in cardiac output. However, in the setting of heart failure (HF), preload augmentation may precipitate HF decompensation. In this review, we focus on the role of splanchnic nerve modulation and pharmacological therapeutic interventions to prevent HF decompensation through preload reduction. Furthermore, we explore the emerging device-based approaches for cardiac preload reduction while reviewing the ongoing clinical trials.
Collapse
Affiliation(s)
| | | | - Jan Biegus
- Institute of Heart Diseases, Wroclaw Medical University, Poland
| | - Rafael de la Espriella
- Cardiology Department, Hospital Clínico Universitario de Valencia, Fundación de Investigación INCLIVA, Valencia, Spain
| | - Julio Núñez
- Cardiology Department, Hospital Clínico Universitario de Valencia, Fundación de Investigación INCLIVA, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; CIBER Cardiovascular, Madrid, Spain
| | - Carlos G Santos-Gallego
- Cardiology Department, Mount Sinai Hospital, NYC; Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, NYC
| | | | - Marat Fudim
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA; Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|
6
|
Sorolla-Romero JA, Navarrete-Navarro J, Martinez-Sole J, Garcia HMG, Diez-Gil JL, Martinez-Dolz L, Sanz-Sanchez J. Pharmacological Considerations during Percutaneous Treatment of Heart Failure. Curr Pharm Des 2024; 30:565-577. [PMID: 38477207 DOI: 10.2174/0113816128284131240209113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Heart Failure (HF) remains a global health challenge, marked by its widespread prevalence and substantial resource utilization. Although the prognosis has improved in recent decades due to the treatments implemented, it continues to generate high morbidity and mortality in the medium to long term. Interventional cardiology has emerged as a crucial player in HF management, offering a diverse array of percutaneous treatments for both acute and chronic HF. This article aimed to provide a comprehensive review of the role of percutaneous interventions in HF patients, with a primary focus on key features, clinical effectiveness, and safety outcomes. Despite the growing utilization of these interventions, there remain critical gaps in the existing body of evidence. Consequently, the need for high-quality randomized clinical trials and extensive international registries is emphasized to shed light on the specific patient populations and clinical scenarios that stand to benefit most from these innovative devices.
Collapse
Affiliation(s)
- Jose Antonio Sorolla-Romero
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Javier Navarrete-Navarro
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Julia Martinez-Sole
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Hector M Garcia Garcia
- Department of Cardiology, MedStar Washington Hospital Center, 110 Irving St NW, Washington, DC 20010, United States
| | - Jose Luis Diez-Gil
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Luis Martinez-Dolz
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| | - Jorge Sanz-Sanchez
- Department of Cardiology, Hospital Universitari i Politècnic La Fe, Avenida Fernando Abril Martorell 116, Valencia, Spain
| |
Collapse
|
7
|
Bertolone DT, Paolisso P, Gallinoro E, Belmonte M, Bermpeis K, De Colle C, Esposito G, Caglioni S, Fabbricatore D, Leone A, Valeriano C, Shumkova M, Storozhenko T, Viscusi MM, Botti G, Verstreken S, Morisco C, Barbato E, Bartunek J, Vanderheyden M. Innovative Device-Based Strategies for Managing Acute Decompensated Heart Failure. Curr Probl Cardiol 2023; 48:102023. [PMID: 37553060 DOI: 10.1016/j.cpcardiol.2023.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Acute decompensated heart failure (ADHF) is a major cause of hospitalizations in older adults, leading to high mortality, morbidity, and healthcare costs. To address the persistent poor outcomes in ADHF, novel device-based approaches targeting specific pathophysiological mechanisms are urgently needed. The recently introduced DRI2P2S classification categorizes these innovative therapies based on their mechanisms. Devices include dilators (increasing venous capacitance), removers (directly removing sodium and water), inotropes (enhancing left ventricular contractility), interstitials (accelerating lymph removal), pushers (increasing renal arterial pressure), pullers (decreasing renal venous pressure), and selective drippers (selective intrarenal drug infusion). Some are tailored for chronic HF, while others focus on the acute setting. Most devices are in early development, necessitating further research to understand mechanisms, assess clinical effectiveness, and ensure safety before routine use in ADHF management. Exploring these innovative device-based strategies may lead to improved outcomes and revolutionize HF treatment in the future.
Collapse
Affiliation(s)
- Dario Tino Bertolone
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy; Division of University Cardiology, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Emanuele Gallinoro
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Division of University Cardiology, IRCCS Ospedale Galeazzi Sant'Ambrogio, Milan, Italy
| | - Marta Belmonte
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | | | - Cristina De Colle
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Giuseppe Esposito
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | | | - Davide Fabbricatore
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Attilio Leone
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Chiara Valeriano
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | | | | | - Michele Mattia Viscusi
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Giulia Botti
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | | | - Carmine Morisco
- Department of Advanced Biomedical Sciences, University of Naples, Naples, Italy
| | - Emanuele Barbato
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium; Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Jozef Bartunek
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
| | | |
Collapse
|
8
|
Nathan S, Basir MB. Emerging Device Therapies for Cardiorenal Syndrome. JOURNAL OF THE SOCIETY FOR CARDIOVASCULAR ANGIOGRAPHY & INTERVENTIONS 2023; 2:101210. [PMID: 39131074 PMCID: PMC11307833 DOI: 10.1016/j.jscai.2023.101210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 08/13/2024]
Abstract
While the existence of cardiorenal perturbations has been known for nearly 2 centuries, only in the past 2 decades has significant progress been made in classifying these alterations and characterizing the pathobiology and hemodynamic signature of cardiorenal syndrome (CRS). Empiric intravenous diuretic therapy with fluid and sodium restriction and selective use of vasoactive agents have remained cornerstones of managing acute heart failure with or without acute CRS; however, recent clinical data has exposed the shortcomings of this approach. The traditional view of CRS has long focused on low cardiac output with resultant renal arterial hypoperfusion as the central hemodynamic derangement but this too, has been challenged by new preclinical and clinical observations. Renal venous congestion/hypertension has since been identified as an important hemodynamic contributor to the development of CRS, resulting in diminished renal perfusion pressure, defined as the difference between arterial driving pressure and renal venous pressure. Novel circulatory renal assist devices for the treatment of acute (type I) CRS are in development and may be divided into 2 broad categories: "pushers" which aim to improve renal arterial perfusion (renal preload) and "pullers" which are designed to reduce renal venous congestion (renal afterload). Numerous devices have shown promise in early-stage clinical studies but none have been approved yet for commercial use in the United States. The value of CRS device therapies will ultimately rest on safety as well as the ability of these devices to effect predictable, meaningful, and durable improvements in renal function along with clinical and hemodynamic markers of congestion.
Collapse
Affiliation(s)
- Sandeep Nathan
- University of Chicago Medicine, Heart and Vascular Center, Chicago, Illinois
| | - Mir B. Basir
- Division of Cardiovascular Medicine, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
9
|
Mann DL. Shark Attack: Introducing the 2023 Technology and Heart Failure Therapeutics Shark Tank Edition of JACC: Basic to Translational Science. JACC Basic Transl Sci 2023; 8:375-376. [PMID: 37138807 PMCID: PMC10149649 DOI: 10.1016/j.jacbts.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Douglas L. Mann
- Address for correspondence: Dr Douglas L. Mann, Editor-in-Chief, JACC: Basic to Translational Science, American College of Cardiology, Heart House, 2400 N Street Northwest, Washington, DC 20037, USA.
| |
Collapse
|
10
|
Copeland VJ, Fardman A, Furer A. Keep the Right in Mind-A Focused Approach to Right Ventricle-Predominant Cardiogenic Shock. Life (Basel) 2023; 13:379. [PMID: 36836735 PMCID: PMC9965084 DOI: 10.3390/life13020379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Cardiogenic shock (CS) remains a highly lethal condition despite many efforts and new interventions. Patients presenting with a rapid onset of hemodynamic instability and subsequent collapse require prompt and appropriate multimodality treatment. Multiple etiologies can lead to heart failure and subsequent shock. As the case prevalence of heart failure increases worldwide, it is of great importance to explore all manners and protocols of presentation and treatment present. With research primarily focusing on CS due to cardiac left-sided pathology, few assessments of right-sided pathology and the subsequent clinical state and treatment have been conducted. This review aims to present an in-depth assessment of the currently available literature, assessing the pathophysiology, presentation and management of CS patients due to right heart failure.
Collapse
Affiliation(s)
- Viana Jacquline Copeland
- Leviev Heart Center, Sheba Medical Center, Ramat-Gan, Israel Affiliated to the Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Alexander Fardman
- Leviev Heart Center, Sheba Medical Center, Ramat-Gan, Israel Affiliated to the Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ariel Furer
- Leviev Heart Center, Sheba Medical Center, Ramat-Gan, Israel Affiliated to the Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Military Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91031, Israel
| |
Collapse
|
11
|
Abassi Z, Khoury EE, Karram T, Aronson D. Edema formation in congestive heart failure and the underlying mechanisms. Front Cardiovasc Med 2022; 9:933215. [PMID: 36237903 PMCID: PMC9553007 DOI: 10.3389/fcvm.2022.933215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Congestive heart failure (HF) is a complex disease state characterized by impaired ventricular function and insufficient peripheral blood supply. The resultant reduced blood flow characterizing HF promotes activation of neurohormonal systems which leads to fluid retention, often exhibited as pulmonary congestion, peripheral edema, dyspnea, and fatigue. Despite intensive research, the exact mechanisms underlying edema formation in HF are poorly characterized. However, the unique relationship between the heart and the kidneys plays a central role in this phenomenon. Specifically, the interplay between the heart and the kidneys in HF involves multiple interdependent mechanisms, including hemodynamic alterations resulting in insufficient peripheral and renal perfusion which can lead to renal tubule hypoxia. Furthermore, HF is characterized by activation of neurohormonal factors including renin-angiotensin-aldosterone system (RAAS), sympathetic nervous system (SNS), endothelin-1 (ET-1), and anti-diuretic hormone (ADH) due to reduced cardiac output (CO) and renal perfusion. Persistent activation of these systems results in deleterious effects on both the kidneys and the heart, including sodium and water retention, vasoconstriction, increased central venous pressure (CVP), which is associated with renal venous hypertension/congestion along with increased intra-abdominal pressure (IAP). The latter was shown to reduce renal blood flow (RBF), leading to a decline in the glomerular filtration rate (GFR). Besides the activation of the above-mentioned vasoconstrictor/anti-natriuretic neurohormonal systems, HF is associated with exceptionally elevated levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). However, the supremacy of the deleterious neurohormonal systems over the beneficial natriuretic peptides (NP) in HF is evident by persistent sodium and water retention and cardiac remodeling. Many mechanisms have been suggested to explain this phenomenon which seems to be multifactorial and play a major role in the development of renal hyporesponsiveness to NPs and cardiac remodeling. This review focuses on the mechanisms underlying the development of edema in HF with reduced ejection fraction and refers to the therapeutic maneuvers applied today to overcome abnormal salt/water balance characterizing HF.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
- Department of Laboratory Medicine, Rambam Health Care Campus, Haifa, Israel
- *Correspondence: Zaid Abassi,
| | - Emad E. Khoury
- Department of Physiology, Bruce Rappaport Faculty of Medicine, Technion–Israel Institute of Technology, Haifa, Israel
| | - Tony Karram
- Department of Vascular Surgery and Kidney Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Doron Aronson
- Department of Cardiology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
12
|
Popa IP, Haba MȘC, Mărănducă MA, Tănase DM, Șerban DN, Șerban LI, Iliescu R, Tudorancea I. Modern Approaches for the Treatment of Heart Failure: Recent Advances and Future Perspectives. Pharmaceutics 2022; 14:1964. [PMID: 36145711 PMCID: PMC9503448 DOI: 10.3390/pharmaceutics14091964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure (HF) is a progressively deteriorating medical condition that significantly reduces both the patients' life expectancy and quality of life. Even though real progress was made in the past decades in the discovery of novel pharmacological treatments for HF, the prevention of premature deaths has only been marginally alleviated. Despite the availability of a plethora of pharmaceutical approaches, proper management of HF is still challenging. Thus, a myriad of experimental and clinical studies focusing on the discovery of new and provocative underlying mechanisms of HF physiopathology pave the way for the development of novel HF therapeutic approaches. Furthermore, recent technological advances made possible the development of various interventional techniques and device-based approaches for the treatment of HF. Since many of these modern approaches interfere with various well-known pathological mechanisms in HF, they have a real ability to complement and or increase the efficiency of existing medications and thus improve the prognosis and survival rate of HF patients. Their promising and encouraging results reported to date compel the extension of heart failure treatment beyond the classical view. The aim of this review was to summarize modern approaches, new perspectives, and future directions for the treatment of HF.
Collapse
Affiliation(s)
- Irene Paula Popa
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Mihai Ștefan Cristian Haba
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Minela Aida Mărănducă
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Daniela Maria Tănase
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Lăcrămioara Ionela Șerban
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Radu Iliescu
- Department of Pharmacology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ionuț Tudorancea
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
- Department of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
13
|
Guzik M, Urban S, Iwanek G, Biegus J, Ponikowski P, Zymliński R. Novel Therapeutic Devices in Heart Failure. J Clin Med 2022; 11:4303. [PMID: 35893394 PMCID: PMC9331275 DOI: 10.3390/jcm11154303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Heart failure (HF) constitutes a significant clinical problem and is associated with a sizeable burden for the healthcare system. Numerous novel techniques, including device interventions, are investigated to improve clinical outcome. A review of the most notable currently studied devices targeting pathophysiological processes in HF was performed. Interventions regarding autonomic nervous system imbalance, i.e., baroreflex activation therapy; vagus, splanchnic and cardiopulmonary nerves modulation; respiratory disturbances, i.e., phrenic nerve stimulation and synchronized diaphragmatic therapy; decongestion management, i.e., the Reprieve system, transcatheter renal venous decongestion system, Doraya, preCardia, WhiteSwell and Aquapass, are presented. Each segment is divided into subsections: potential pathophysiological target, existing evidence and weaknesses or unexplained issues. Novel therapeutic devices represent great potential in HF therapy management; however, further evidence is necessary to fully evaluate their utility.
Collapse
|