1
|
Lu F, Pan X, Zhang W, Su X, Gu Y, Qiu H, Shen S, Liu C, Liu W, Wang X, Zhan Z, Liu Z, He Z. A Three-Dimensional Imaging Method for the Quantification and Localization of Dynamic Cell Tracking Posttransplantation. Front Cell Dev Biol 2021; 9:698795. [PMID: 34557483 PMCID: PMC8452970 DOI: 10.3389/fcell.2021.698795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cell transplantation has been proposed as a promising therapeutic strategy for curing the diseases requiring tissue repairing and functional restoration. A preclinical method to systematically evaluate the fates of donor cells in recipients, spatially and temporally, is demanded for judging therapeutic potentials for the particularly designed cell transplantation. Yet, the dynamic cell tracking methodology for tracing transplanted cells in vivo is still at its early phase. Here, we created a practical protocol for dynamically tracking cell via a three-dimensional (3D) technique which enabled us to localize, quantify, and overall evaluate the transplanted hepatocytes within a liver failure mouse model. First, the capacity of 3D bioluminescence imaging for quantifying transplanted hepatocytes was defined. Images obtained from the 3D bioluminescence imaging module were then combined with the CT scanner to reconstruct structure images of host mice. With those reconstructed images, precise locations of transplanted hepatocytes in the liver of the recipient were dynamically monitored. Immunohistochemistry staining of transplanted cells, and the serology assay of liver panel of the host mice were applied to verify the successful engraftment of donor cells in the host livers. Our protocol was practical for evaluating the engraftment efficiency of donor cells at their preclinical phases, which is also applicable as a referable standard for studying the fates of other transplanted cells, such as stem cell-derived cell types, during preclinical studies with cell transplantation therapy.
Collapse
Affiliation(s)
- Fengfeng Lu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xin Pan
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xin Su
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Yuying Gu
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hua Qiu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengwei Shen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Hepatobiliary and Pancreatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Changcheng Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Wei Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Xicheng Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Zhenzhen Zhan
- Institute of Heart Failure, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhongmin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Institute of Heart Failure, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Zhiying He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
2
|
Badman RP, Moore SL, Killian JL, Feng T, Cleland TA, Hu F, Wang MD. Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures. Sci Rep 2020; 10:11239. [PMID: 32641693 PMCID: PMC7343881 DOI: 10.1038/s41598-020-67724-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022] Open
Abstract
Recent technological advances have introduced diverse engineered nanoparticles (ENPs) into our air, water, medicine, cosmetics, clothing, and food. However, the health and environmental effects of these increasingly common ENPs are still not well understood. In particular, potential neurological effects are one of the most poorly understood areas of nanoparticle toxicology (nanotoxicology), in that low-to-moderate neurotoxicity can be subtle and difficult to measure. Culturing primary neuron explants on planar microelectrode arrays (MEAs) has emerged as one of the most promising in vitro techniques with which to study neuro-nanotoxicology, as MEAs enable the fluorescent tracking of nanoparticles together with neuronal electrical activity recording at the submillisecond time scale, enabling the resolution of individual action potentials. Here we examine the dose-dependent neurotoxicity of dextran-coated iron oxide nanoparticles (dIONPs), a common type of functionalized ENP used in biomedical applications, on cultured primary neurons harvested from postnatal day 0-1 mouse brains. A range of dIONP concentrations (5-40 µg/ml) were added to neuron cultures, and cells were plated either onto well plates for live cell, fluorescent reactive oxidative species (ROS) and viability observations, or onto planar microelectrode arrays (MEAs) for electrophysiological measurements. Below 10 µg/ml, there were no dose-dependent cellular ROS increases or effects in MEA bursting behavior at sub-lethal dosages. However, above 20 µg/ml, cell death was obvious and widespread. Our findings demonstrate a significant dIONP toxicity in cultured neurons at concentrations previously reported to be safe for stem cells and other non-neuronal cell types.
Collapse
Affiliation(s)
- Ryan P Badman
- Department of Physics and LASSP, Cornell University, Ithaca, NY, 14853, USA.,Center for Brain Science, RIKEN, Saitama, 351-0198, Japan
| | - Shanna L Moore
- Department of Physics and LASSP, Cornell University, Ithaca, NY, 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA
| | - Jessica L Killian
- Department of Physics and LASSP, Cornell University, Ithaca, NY, 14853, USA.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA.,Quantum Biosystems, Menlo Park, CA, 94025, USA
| | - Tuancheng Feng
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Michelle D Wang
- Department of Physics and LASSP, Cornell University, Ithaca, NY, 14853, USA. .,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
3
|
Goodfellow F, Simchick GA, Mortensen LJ, Stice SL, Zhao Q. Tracking and Quantification of Magnetically Labeled Stem Cells using Magnetic Resonance Imaging. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3899-3915. [PMID: 28751853 PMCID: PMC5526633 DOI: 10.1002/adfm.201504444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Stem cell based therapies have critical impacts on treatments and cures of diseases such as neurodegenerative or cardiovascular disease. In vivo tracking of stem cells labeled with magnetic contrast agents is of particular interest and importance as it allows for monitoring of the cells' bio-distribution, viability, and physiological responses. Herein, recent advances are introduced in tracking and quantification of super-paramagnetic iron oxide (SPIO) nanoparticles-labeled cells with magnetic resonance imaging, a noninvasive approach that can longitudinally monitor transplanted cells. This is followed by recent translational research on human stem cells that are dual-labeled with green fluorescence protein (GFP) and SPIO nanoparticles, then transplanted and tracked in a chicken embryo model. Cell labeling efficiency, viability, and cell differentiation are also presented.
Collapse
Affiliation(s)
| | - Gregory A Simchick
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| | | | | | - Qun Zhao
- Bioimaging Research Center, Regenerative Bioscience Center, and Department of Physics University of Georgia, Athens, GA. 30602, USA
| |
Collapse
|
4
|
Gokhale AGK, Chelluri LK, Kumaresan K, Subramanyam G, Sudhakar K, Vemuri S, Debnath T, Ratnakar KS. Evaluation of the autologous bone marrow mononuclear therapy and functional restoration in the scarred myocardium by imaging analysis. J Cardiovasc Dis Res 2011; 2:133-6. [PMID: 21814420 PMCID: PMC3144623 DOI: 10.4103/0975-3583.83037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 62-year-old male patient with previous history of myocardial infarction, akinetic myocardial segments, and an ejection fraction of 31% with the NYHA class III category was selected for the autologous bone marrow (ABM)-derived mononuclear cell fraction injection during CABG surgery. Nitrate augmented myocardial tracer uptake was imaged by ECG gated SPECT pre- and 1 year post-ABM therapy, using radiotracer Tc99m Sestamibi. The baseline gated SPECT demonstrated full thickness infarct in 40% area of LAD territory. Bone marrow aspirate of 20.0 ml from sternum yielding a mono nuclear cell fraction of 4.5 × 107 cells/ml was suspended in 2.0 ml of sterile normal saline to be injected at eight sites of the injured myocardium. There were no apparent side effects due to the procedure, i.e., life threatening events, major bleeds, reaction, or shock. The case was followed at the end of 1, 3, 6 months by ECG and Holter monitor and ECG gated SPECT at the end of 12 months. The gated SPECT images demonstrated mild but definitely improved tracer uptake within part of the infarcted segments along with improvement in ejection fraction to 45%, and a clinical change in the NYHA Class to II. Cell-based therapy may offer benefits of induction of normal tissue microenvironment.
Collapse
|
5
|
Harrington JK, Chahboune H, Criscione JM, Li AY, Hibino N, Yi T, Villalona GA, Kobsa S, Meijas D, Duncan DR, Devine L, Papademetri X, Shin'oka T, Fahmy TM, Breuer CK. Determining the fate of seeded cells in venous tissue-engineered vascular grafts using serial MRI. FASEB J 2011; 25:4150-61. [PMID: 21846838 DOI: 10.1096/fj.11-185140] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A major limitation of tissue engineering research is the lack of noninvasive monitoring techniques for observations of dynamic changes in single tissue-engineered constructs. We use cellular magnetic resonance imaging (MRI) to track the fate of cells seeded onto functional tissue-engineered vascular grafts (TEVGs) through serial imaging. After in vitro optimization, murine macrophages were labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles and seeded onto scaffolds that were surgically implanted as inferior vena cava interposition grafts in SCID/bg mice. Serial MRI showed the transverse relaxation times (T(2)) were significantly lower immediately following implantation of USPIO-labeled scaffolds (T(2) = 44 ± 6.8 vs. 71 ± 10.2 ms) but increased rapidly at 2 h to values identical to control implants seeded with unlabeled macrophages (T(2) = 63 ± 12 vs. 63 ± 14 ms). This strongly indicates the rapid loss of seeded cells from the scaffolds, a finding verified using Prussian blue staining for iron containing macrophages on explanted TEVGs. Our results support a novel paradigm where seeded cells are rapidly lost from implanted scaffolds instead of developing into cells of the neovessel, as traditionally thought. Our findings confirm and validate this paradigm shift while demonstrating the first successful application of noninvasive MRI for serial study of cellular-level processes in tissue engineering.
Collapse
Affiliation(s)
- Jamie K Harrington
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cromer Berman SM, Walczak P, Bulte JWM. Tracking stem cells using magnetic nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:343-55. [PMID: 21472999 DOI: 10.1002/wnan.140] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stem cell therapies offer great promise for many diseases, especially those without current effective treatments. It is believed that noninvasive imaging techniques, which offer the ability to track the status of cells after transplantation, will expedite progress in this field and help to achieve maximized therapeutic effect. Today's biomedical imaging technology allows for real-time, noninvasive monitoring of grafted stem cells including their biodistribution, migration, survival, and differentiation, with magnetic resonance imaging (MRI) of nanoparticle-labeled cells being one of the most commonly used techniques. Among the advantages of MR cell tracking are its high spatial resolution, no exposure to ionizing radiation, and clinical applicability. In order to track cells by MRI, the cells need to be labeled with magnetic nanoparticles, for which many types exist. There are several cellular labeling techniques available, including simple incubation, use of transfection agents, magnetoelectroporation, and magnetosonoporation. In this overview article, we will review the use of different magnetic nanoparticles and discuss how these particles can be used to track the distribution of transplanted cells in different organ systems. Caveats and limitations inherent to the tracking of nanoparticle-labeled stem cells are also discussed.
Collapse
Affiliation(s)
- Stacey M Cromer Berman
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|