1
|
Wang J, Wang J, Zhong J, Liu H, Li W, Chen M, Xu L, Zhang W, Zhang Z, Wei Z, Guo J, Wang X, Sui J, Liu X, Zhang S, Wang X. LRG1 promotes atherosclerosis by inducing macrophage M1-like polarization. Proc Natl Acad Sci U S A 2024; 121:e2405845121. [PMID: 39178231 PMCID: PMC11363312 DOI: 10.1073/pnas.2405845121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/05/2024] [Indexed: 08/25/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall characterized by the accumulation of cholesterol-rich lipoproteins in macrophages. How macrophages commit to proinflammatory polarization under atherosclerosis conditions is not clear. Report here that the level of a circulating protein, leucine-rich alpha-2 glycoprotein 1 (LRG1), is elevated in the atherosclerotic tissue and serum samples from patients with coronary artery disease (CAD). LRG1 stimulated macrophages to proinflammatory M1-like polarization through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways. The LRG1 knockout mice showed significantly delayed atherogenesis progression and reduced levels of macrophage-related proinflammatory cytokines in a high-fat diet-induced Apoe-/- mouse atherosclerosis model. An anti-LRG1 neutralizing antibody also effectively blocked LRG1-induced macrophage M1-like polarization in vitro and conferred therapeutic benefits to animals with ApoE deficiency-induced atherosclerosis. LRG1 may therefore serve as an additional biomarker for CAD and targeting LRG1 could offer a potential therapeutic strategy for CAD patients by mitigating the proinflammatory response of macrophages.
Collapse
Affiliation(s)
- Juan Wang
- Heart-Center of Beijing Chao-Yang hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing100020, China
| | - Jing Wang
- National Institute of Biological Sciences, Beijing102206, China
| | - Jiuchang Zhong
- Heart-Center of Beijing Chao-Yang hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing100020, China
| | - Hongbin Liu
- Department of Cardiology, The Second Medical Center, Beijing 301 Hospital, Beijing100853, China
| | - Weiming Li
- Heart-Center of Beijing Chao-Yang hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing100020, China
| | - Mulei Chen
- Heart-Center of Beijing Chao-Yang hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing100020, China
| | - Li Xu
- Heart-Center of Beijing Chao-Yang hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing100020, China
| | - Wenbin Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Ze Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, Beijing102206, China
| | - Jia Guo
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Xinyu Wang
- Heart-Center of Beijing Chao-Yang hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing100020, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Xingpeng Liu
- Heart-Center of Beijing Chao-Yang hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing100020, China
| | - Sitao Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
2
|
Hostačná L, Mašlanková J, Pella D, Hubková B, Mareková M, Pella D. A Multi-Biomarker Approach to Increase the Accuracy of Diagnosis and Management of Coronary Artery Disease. J Cardiovasc Dev Dis 2024; 11:258. [PMID: 39330316 PMCID: PMC11432239 DOI: 10.3390/jcdd11090258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024] Open
Abstract
Non-invasive possibilities of predicting cardiovascular risk and monitoring the treatment and progression of coronary artery disease (CAD) are important subjects of cardiovascular research. Various inflammatory markers have been identified as potential biomarkers of CAD, including interleukin-6 (IL-6), lipocalin-2 (LCN-2), growth differentiation factor 15 (GDF-15), and T cell immunoglobulin and mucin domain-3 (TIM-3). This research aims to identify their utility in the investigation of CAD severity and progression. The basic anthropometric parameters, as well as the levels of urea, creatinine, CRP, leukocytes, fibrinogen, and biomarkers of inflammation, were measured in 130 patients who underwent coronary angiography. In male patients, divided according to findings on coronary angiography, we observed an increasing expression of GDF-15 with increasing stenosis (with worsening findings). In females, we observed increasing fibrinogen expression with increasing stenosis, i.e., findings on coronary angiography. Correlation analysis did not confirm the relationship between TIM-3, LCN and 2, IL-6 and the severity of findings obtained by coronary angiography; however, the correlation of TIM-3 and LCN-2 expression was positive with the finding, and the correlation of IL-6 with the finding was surprisingly negative. Understanding the role of these inflammatory markers in CAD can be helpful in risk stratification, guiding therapeutic strategies, and monitoring treatment responses in patients with CAD.
Collapse
Affiliation(s)
- Lenka Hostačná
- Department of Clinical Biochemistry, Medirex, a.s., Magnezitárska 2/C, 040 13 Košice, Slovakia
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Jana Mašlanková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Dominik Pella
- 1st Department of Cardiology of the East Slovak Institute of Cardiovascular Diseases, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Beáta Hubková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| | - Daniel Pella
- 2nd Department of Cardiology of the East Slovak Institute of Cardiovascular Diseases, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia
| |
Collapse
|
3
|
Lyu L, Xu J, Xv C, Xiao H, Liu Z, He Y, Gao W, Hao B, Liu H. Prognostic value of growth differentiation factor-15 in heart failure among whole ejection fraction phenotypes. ESC Heart Fail 2024; 11:2295-2304. [PMID: 38641904 PMCID: PMC11287306 DOI: 10.1002/ehf2.14807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/21/2024] Open
Abstract
AIMS The utility of growth differentiation factor-15 (GDF-15) in predicting long-term adverse outcomes in heart failure (HF) patients is not well established. This study explored the relationship between GDF-15 levels and adverse outcomes in HF patients across various ejection fraction (EF) phenotypes associated with coronary heart disease (CHD) and evaluated the added prognostic value of incorporating GDF-15 into the Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) risk score-based model. METHODS AND RESULTS This single-centre cohort study included 823 HF patients, categorized into 230 (27.9%) reduced EF (HFrEF), 271 (32.9%) mid-range EF (HFmrEF), and 322 (39.1%) preserved EF (HFpEF) groups. The median age was 68.0 years (range: 56.0-77.0), and 245 (29.8%) were females. Compared with the HFrEF and HFmrEF groups, the HFpEF group had a higher GDF-15 concentration (P = 0.002) and a higher MAGGIC risk score (P < 0.001). We examined the associations between GDF-15 levels and the risks of all-cause mortality and HF rehospitalization using Cox regression models. The C-index, integrated discrimination improvement (IDI), and net reclassification improvement (NRI) metrics were employed to assess the incremental prognostic value. During the 9.4 year follow-up period, 425 patients died, and 484 were rehospitalized due to HF. Multivariate Cox regression analysis revealed that elevated GDF-15 levels were significantly associated with an increased risk of all-cause mortality [hazard ratio (HR) = 1.36, 95% confidence interval (CI): 1.20-1.54; P < 0.001] and HF rehospitalization (HR = 1.75, 95% CI: 1.57-1.95; P < 0.001) across all HF phenotypes. This association remained significant when GDF-15 was treated as a categorical variable (high GDF-15 group: all-cause death: HR = 1.73, 95% CI: 1.40-2.14; P < 0.001; HF rehospitalization: HR = 3.37, 95% CI: 2.73-4.15; P < 0.001). Inclusion of GDF-15 in the MAGGIC risk score-based model provided additional prognostic value for all HF patients (Δ C-index = 0.021, 95% CI: 0.002-0.041; IDI = 0.011, 95% CI: 0.001-0.025; continuous NRI = 0.489, 95% CI: 0.174-0.629) and HF rehospitalization (Δ C-index = 0.034, 95% CI: 0.005-0.063; IDI = 0.021, 95% CI: 0.007-0.032; continuous NRI = 0.307, 95% CI: 0.147-0.548), particularly in the HFpEF subgroup. CONCLUSIONS GDF-15 is identified as an independent risk factor for adverse outcomes in HF patients across the entire EF spectrum in the context of CHD. Integrating GDF-15 into the MAGGIC risk score-based model enhances its prognostic capability for adverse outcomes in the general HF population. This incremental prognostic effect was observed specifically in the HFpEF subgroup and not in other subgroups.
Collapse
Affiliation(s)
- Lyu Lyu
- Department of CardiologyThe Second Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Juan Xu
- Department of General SurgeryAffiliated Xiaoshan Hospital, Hangzhou Normal UniversityHangzhouChina
| | - Cui Xv
- Department of Medical AdministrationThe 305 Hospital of PLABeijingChina
| | - Hunan Xiao
- Department of CardiologyThe Second Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Zhenzhen Liu
- Department of CardiologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yanru He
- Department of CardiologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Weiyang Gao
- Department of CardiologyThe Second Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Benchuan Hao
- Department of CardiologyThe Second Medical Centre, Chinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Hongbin Liu
- Department of CardiologyThe Second Medical Centre, Chinese PLA General HospitalBeijingChina
| |
Collapse
|
4
|
Li H, Zhu Q, Bai J, Chen J, Zhu Z, Hao B, Wang W, Bai Y, Liu H. Soluble ST2 for predicting heart failure, atrial fibrillation and death in patients with coronary heart disease with or without renal insufficiency. Heliyon 2024; 10:e29804. [PMID: 38698979 PMCID: PMC11064070 DOI: 10.1016/j.heliyon.2024.e29804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Background This study aimed to investigate the relationship between baseline soluble suppression of tumorigenesis-2 (sST2) concentration and the outcomes of heart failure (HF), atrial fibrillation (AF) or death in patients with coronary heart disease (CHD) with or without renal insufficiency (RI). Methods Between March 2011 and December 2015, 3454 patients with CHD from the Chinese PLA General Hospital were enrolled in this cohort study. The patients were followed up until October 2021. AF, HF, and death events were recorded. Associations between baseline sST2 concentrations and clinical outcomes were assessed using Kaplan-Meier (K-M) curves, and Cox regression and generalised additive models. Subgroup analysis were carried out between RI and non-RI groups. Results Among the patients with CHD (61.5 ± 11.8 years; 78.6 % men), 415 (12.02 %) had RI. During a median follow-up of 8.37 years, HF and AF were reported in 216 (6.25 %) and 174 (5.04 %) patients, respectively, and 297 (8.60 %) died. The K-M curves indicated that patients in the higher quartiles of sST2 concentrations were correlated with a poor survival rate of HF, AF, or death (all Ps < 0.001). Generalised additive model (GAM) demonstrated a nonlinear positive association between sST2 concentration and the risk of HF, AF, and death in CHD patients. The cut-off value of sST2 for predicting HF, AF and death were 32.1, 25.4 and 28.6 ng/mL, respectively. CHD patients with sST2 higher than the cut-off value had higher risks of HF (HR: 3.02, 95%CI: 2.24-4.05), AF (HR: 2.86; 95%CI: 2.10-3.90), and death (HR:2.11, 95%CI: 1.67-2.67). Furthermore, in patients with RI (12.02 %, n = 415), the prognostic value of sST2 over the cut-off value for HF and death remained unchanged (HR: 3.21 and 2.35; P < 0.05). In patients with CHD with or without RI, sST2 improved the area under the curve (AUC) of traditional risk models for predicting clinical endpoint events. Conclusions The biomarker sST2 may be useful for predicting HF, AF, and death in patients with CHD. The predicted value was not affected by renal function.
Collapse
Affiliation(s)
- Huiying Li
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 100853, Beijing, China
- Medical School of Chinese PLA, 100853, Beijing, China
| | - Qiwei Zhu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 100853, Beijing, China
| | - Jing Bai
- Outpatient Department of the Ministry of Foreign Affairs, 100020, Beijing, China
| | - Jianqiao Chen
- Department of Geriatric Medicine, Henan Provincial People's Hospital, 450003, Henan, China
| | - Zifan Zhu
- Yangfangdian Outpatient Department, Southern Medical Branch of PLA General Hospital, 100843, Beijing, China
| | - Benchuan Hao
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 100853, Beijing, China
- Medical School of Chinese PLA, 100853, Beijing, China
| | - Wei Wang
- Department of Cardiology, The Sixth Medical Center of Chinese PLA General Hospital, 100037, Beijing, China
| | - Yongyi Bai
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 100853, Beijing, China
| | - Hongbin Liu
- Department of Cardiology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 100853, Beijing, China
| |
Collapse
|
5
|
Hao B, Lyu L, Xu J, Zhu X, Xu C, Gao W, Qin J, Huang T, Ding Y, Zhang Z, Yang Y, Liu H. The relationship between triglyceride-glucose index and prospective key clinical outcomes in patients hospitalised for coronary artery disease. Cardiovasc Diabetol 2024; 23:40. [PMID: 38254088 PMCID: PMC10804527 DOI: 10.1186/s12933-024-02132-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND The triglyceride-glucose (TyG) index is regarded as a dependable alternative for assessing insulin resistance (IR), given its simplicity, cost-effectiveness, and strong correlation with IR. The relationship between the TyG index and adverse outcomes in patients with coronary heart disease (CHD) is not well established. This study examines the association of the TyG index with long-term adverse outcomes in hospitalized CHD patients. METHODS In this single-center prospective cohort study, 3321 patients hospitalized with CHD were included. Multivariate Cox regression models were employed to assess the associations between the TyG index and the incidence of all-cause mortality and major adverse cardiovascular events (MACEs). To examine potential nonlinear associations, restricted cubic splines and threshold analysis were utilized. RESULTS During a follow-up period of 9.4 years, 759 patients (22.9%) succumbed to mortality, while 1291 (38.9%) experienced MACEs. Threshold analysis demonstrated a significant "U"-shaped nonlinear relationship with MACEs, with different hazard ratios observed below and above a TyG index of 8.62 (below: HR 0.71, 95% CI 0.50-0.99; above: HR 1.28, 95% CI 1.10-1.48). Notably, an increased risk of all-cause mortality was observed only when the TyG index exceeded 8.77 (HR 1.53, 95% CI 1.19-1.96). CONCLUSIONS This study reveals a nonlinear association between the TyG index and both all-cause mortality and MACEs in hospitalized CHD patients with CHD. Assessing the TyG index, particularly focusing on individuals with extremely low or high TyG index values, may enhance risk stratification for adverse outcomes in this patient population.
Collapse
Affiliation(s)
- Benchuan Hao
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lyu Lyu
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Juan Xu
- Department of General Surgery, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | | | - Cui Xu
- Department of Medical Administration, The 305 Hospital of PLA, Beijing, China
| | - Weiyang Gao
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ji Qin
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Taoke Huang
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yipu Ding
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ziyue Zhang
- Outpatient Department, Hospital of PLA, Hanzhong, China
| | - Yanhui Yang
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Hongbin Liu
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Sawalha K, Norgard NB, Drees BM, López-Candales A. Growth Differentiation Factor 15 (GDF-15), a New Biomarker in Heart Failure Management. Curr Heart Fail Rep 2023; 20:287-299. [PMID: 37289373 DOI: 10.1007/s11897-023-00610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The emergence of biomarkers across medicine's subspecialties continues to evolve. In essence, a biomarker is a biological observation that clearly substitutes a clinical endpoint or intermediate outcome not only are more difficult to observe but also, biomarkers are easier, less expensive and could be measured over shorter periods. In general, biomarkers are versatile and not only used for disease screening and diagnosis but, most importantly, for disease characterization, monitoring, and determination of prognosis as well as individualized therapeutic responses. Obviously, heart failure (HF) is no exception to the use of biomarkers. Currently, natriuretic peptides are the most used biomarkers for both diagnosis and prognostication, while their role in the monitoring of treatment is still debatable. Although several other new biomarkers are currently under investigation regarding diagnosis and determination of prognosis, none of them are specific for HF, and none are recommended for routine clinical use at present. However, among these emerging biomarkers, we would like to highlight the potential for growth differentiation factor (GDF)-15 as a plausible new biomarker that could be helpful in providing prognostic information regarding HF morbidity and mortality.
Collapse
Affiliation(s)
- Khalid Sawalha
- Cardiometabolic Medicine Fellowship, University of Missouri-Kansas City, Kansas City, MO, USA.
- Section of Cardiovascular Medicine, University Health, Truman Medical Center, University of Missouri-Kansas City, 2301 Holmes Street, Kansas City, MO, 64108, USA.
| | - Nicholas B Norgard
- Department of Medicine, University Health Truman Medical Center, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Betty M Drees
- Department(s) of Internal Medicine, Biomedical and Health Informatics, Section of Endocrinology, UMKC School of Medicine, Kansas City, MO, USA
| | - Angel López-Candales
- Section of Cardiovascular Medicine, University Health, Truman Medical Center, University of Missouri-Kansas City, 2301 Holmes Street, Kansas City, MO, 64108, USA
| |
Collapse
|
7
|
WANG J, HAN LN, AI DS, WANG XY, ZHANG WJ, XU XR, LIU HB, ZHANG J, WANG P, LI X, CHEN ML. Growth differentiation factor 15 predicts cardiovascular events in stable coronary artery disease. J Geriatr Cardiol 2023; 20:527-537. [PMID: 37576485 PMCID: PMC10412535 DOI: 10.26599/1671-5411.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND Growth differentiation factor 15 (GDF-15) has been explored as a potential biomarker for various inflammatory diseases and cardiovascular events. This study aimed to assess the predictive role of GDF-15 levels in cardiovascular events and all-cause mortality, considering traditional risk factors and other biomarkers. METHODS A prospective study was conducted and 3699 patients with stable coronary artery disease (CAD) were enrolled into the research. Baseline GDF-15 levels were measured. Median follow-up was 3.1 years during the study. We analyzed clinical variables and several biomarkers. Multivariable Cox regression analysis was performed to evaluate prognostic performance of GDF-15 levels in predicting myocardial infarction (MI), heart failure, stroke, cardiovascular death, and non-cardiovascular death. RESULTS Baseline GDF-15 levels for 3699 patients were grouped by quartile (≤ 1153, 1153-1888, 1888-3043, > 3043 ng/L). Higher GDF-15 levels were associated with older age, male gender, history of hypertension, and elevated levels of N-terminal pro B-type natriuretic peptide (NT-pro BNP), soluble suppression of tumorigenesis-2 (sST2), and creatine (each with P < 0.001). Adjusting for established risk factors and biomarkers in Cox proportional hazards models, a 1 standard deviation (SD) increase in GDF-15 was associated with elevated risk of clinical events [hazard ratio (HR) = 2.18, 95% confidence interval (CI): (1.52-3.11)], including: MI [HR = 2.83 95% CI: (1.03-7.74)], heart failure [HR = 2.71 95% CI: (1.18-6.23)], cardiovascular and non-cardiovascular death [HR = 2.48, 95% CI (1.49-4.11)] during the median follow up of 3.1 years. CONCLUSIONS Higher levels of GDF-15 consistently provides prognostic information for cardiovascular events and all cause death, independent of clinical risk factors and other biomarkers. GDF-15 could be considered as a valuable addition to future risk prediction model in secondary prevention for predicting clinical events in patient with stable CAD.
Collapse
Affiliation(s)
- Juan WANG
- Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing, China
| | - Li-Na HAN
- Department of Cardiology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Dao-Sheng AI
- Academy for Advanced Interdisciplinary Studies, Peking University National Institute of Biological Sciences, Zhongguancun Life Science Park, Tsinghua University, Beijing, China
| | - Xin-Yu WANG
- Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing, China
| | - Wan-Jing ZHANG
- Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xiao-Rong XU
- Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing, China
| | - Hong-Bin LIU
- Department of Cardiology, the Second Medical Center, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing ZHANG
- Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing, China
| | - Pan WANG
- Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing, China
| | - Xu LI
- Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing, China
| | - Mu-Lei CHEN
- Heart Center of Beijing Chao-Yang Hospital, Capital Medical University, Beijing Key Laboratory of Hypertension, Beijing, China
| |
Collapse
|
8
|
Jigoranu RA, Roca M, Costache AD, Mitu O, Oancea AF, Miftode RS, Haba MȘC, Botnariu EG, Maștaleru A, Gavril RS, Trandabat BA, Chirica SI, Haba RM, Leon MM, Costache II, Mitu F. Novel Biomarkers for Atherosclerotic Disease: Advances in Cardiovascular Risk Assessment. Life (Basel) 2023; 13:1639. [PMID: 37629496 PMCID: PMC10455542 DOI: 10.3390/life13081639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis is a significant health concern with a growing incidence worldwide. It is directly linked to an increased cardiovascular risk and to major adverse cardiovascular events, such as acute coronary syndromes. In this review, we try to assess the potential diagnostic role of biomarkers in the early identification of patients susceptible to the development of atherosclerosis and other adverse cardiovascular events. We have collected publications concerning already established parameters, such as low-density lipoprotein cholesterol (LDL-C), as well as newer markers, e.g., apolipoprotein B (apoB) and the ratio between apoB and apoA. Additionally, given the inflammatory nature of the development of atherosclerosis, high-sensitivity c-reactive protein (hs-CRP) or interleukin-6 (IL-6) are also discussed. Additionally, newer publications on other emerging components linked to atherosclerosis were considered in the context of patient evaluation. Apart from the already in-use markers (e.g., LDL-C), emerging research highlights the potential of newer molecules in optimizing the diagnosis of atherosclerotic disease in earlier stages. After further studies, they might be fully implemented in the screening protocols.
Collapse
Affiliation(s)
- Raul-Alexandru Jigoranu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Mihai Roca
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandru-Dan Costache
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ovidiu Mitu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandru-Florinel Oancea
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Radu-Stefan Miftode
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Mihai Ștefan Cristian Haba
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Eosefina Gina Botnariu
- Department of Internal Medicine II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Diabetes, Nutrition and Metabolic Diseases, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Alexandra Maștaleru
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Radu-Sebastian Gavril
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Bogdan-Andrei Trandabat
- Department of Surgery II, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Orthopedics and Trauma, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Sabina Ioana Chirica
- Faculty of General Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (S.I.C.); (R.M.H.)
| | - Raluca Maria Haba
- Faculty of General Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (S.I.C.); (R.M.H.)
| | - Maria Magdalena Leon
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Irina-Iuliana Costache
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania; (R.-A.J.); (O.M.); (A.-F.O.); (R.-S.M.); (M.Ș.C.H.); (A.M.); (R.-S.G.); (M.M.L.); (I.-I.C.); (F.M.)
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Romanian Academy of Medical Sciences, 030167 Bucharest, Romania
- Romanian Academy of Scientists, 050045 Bucharest, Romania
| |
Collapse
|
9
|
Wang L, Cong HL, Zhang JX, Li XM, Hu YC, Wang C, Lang JC, Zhou BY, Li TT, Liu CW, Yang H, Ren LB, Qi W, Li WY. Prognostic performance of multiple biomarkers in patients with acute coronary syndrome without standard cardiovascular risk factors. Front Cardiovasc Med 2022; 9:916085. [PMID: 35966532 PMCID: PMC9363620 DOI: 10.3389/fcvm.2022.916085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background and aims Acute coronary syndrome (ACS) without standard modifiable cardiovascular risk factors (SMuRFs) represents a special case of ACS. Multiple biomarkers have been shown to improve risk stratification in patients with ACS. However, the utility of biomarkers for prognostic stratification in patients with ACS without SMuRFs remains uncertain. The aim of the present study was to evaluate the prognostic value of various biomarkers in patents with ACS without SMuRFs. Methods Data of consecutive patients with ACS without SMuRFs who underwent coronary angiography in Tianjin Chest Hospital between January 2014 and December 2017 were retrospectively collected. The primary outcome was the occurrence of major adverse cardiovascular event (MACE), defined as a composite of cardiovascular death, myocardial infarction and stroke. Seven candidate biomarkers analyses were analyzed using models adjusted for established risk factors. Results During a median 5-year follow-up, 81 of the 621 patients experienced a MACE. After adjustment for important covariates, elevated fibrinogen, D-dimer, N-terminal proB-type natriuretic peptide (NT-proBNP), and lipoprotein (a) [Lp(a)] were found to be individually associated with MACE. However, only D-dimer, NT-proBNP and Lp(a) significantly improved risk reclassification for MACE (all P < 0.05). The multimarker analysis showed that there was a clear increase in the risk of MACE with an increasing number of elevated biomarkers and a higher multimarker score. The adjusted hazard ratio- for MACE (95% confidential intervals) for patients with 4 elevated biomarkers was 6.008 (1.9650–18.367) relative to those without any elevated biomarker-. Adding- the 4 biomarkers or the multimarker score to the basic model significantly improved the C-statistic value, the net reclassification index and the integrated discrimination index (all P < 0.05). Conclusion Fibrinogen, D-dimer, NT-proBNP and Lp(a) provided valuable prognostic information for MACE when applied to patients with ACS without SMuRFs. The multimarker strategy, which combined multiple biomarkers reflecting different pathophysiological process with traditional risk factors improved the cardiovascular risk stratification.
Collapse
|
10
|
Wang J, Wei L, Yang X, Zhong J. Roles of Growth Differentiation Factor 15 in Atherosclerosis and Coronary Artery Disease. J Am Heart Assoc 2019; 8:e012826. [PMID: 31432727 PMCID: PMC6755840 DOI: 10.1161/jaha.119.012826] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Juan Wang
- Heart Center and Beijing Key Laboratory of Hypertension Beijing Chaoyang Hospital Affiliated to Capital Medical University Beijing China
| | - Liqun Wei
- Heart Center and Beijing Key Laboratory of Hypertension Beijing Chaoyang Hospital Affiliated to Capital Medical University Beijing China
| | - Xinchun Yang
- Heart Center and Beijing Key Laboratory of Hypertension Beijing Chaoyang Hospital Affiliated to Capital Medical University Beijing China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension Beijing Chaoyang Hospital Affiliated to Capital Medical University Beijing China
| |
Collapse
|
11
|
Zhang C, Jiang L, Xu L, Tian J, Liu J, Zhao X, Feng X, Wang D, Zhang Y, Sun K, Xu B, Zhao W, Hui R, Gao R, Song L, Yuan J. Implications of Hyperuricemia in Severe Coronary Artery Disease. Am J Cardiol 2019; 123:558-564. [PMID: 30527777 DOI: 10.1016/j.amjcard.2018.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
Hyperuricemia has been associated with mortality in patients with coronary artery disease (CAD). However, its prognostic value remains unknown in the context of severe CAD with heavy atherosclerotic burden in all 3 vessels. We used data from a large cohort of consecutive patients with severe CAD. The primary end point was all-cause death. Propensity score matching was used to identify 2 cohorts of patients with similar baseline characteristics. A total of 8,529 patients with available serum uric acid data were included in the study. Hyperuricemia was present in 1,207 (14.2%) patients. At baseline, hyperuricemic patients had more co-morbidities, and more often received medical therapy alone. During the median follow-up of 7.5 years, significantly more deaths occurred in hyperuricemic patients compared with normouricemic patients (22.5% vs 13.7%; p < 0.001). Multivariable analyses showed that hyperuricemia was associated with an increased risk of mortality (hazard ratio 1.33; 95% confidence interval 1.15 to 1.53; p < 0.001). Propensity score matching yielded similar results (hazard ratio 1.33; 95% confidence interval 1.11 to 1.61; p = 0.003). The association was relatively consistent across subgroups, except for an interaction between age and hyperuricemia. Addition of uric acid to SYNTAX score II provided significant improvements of reclassification and discrimination for mortality prediction. In conclusion, hyperuricemia is relatively common among patients with severe CAD and is independently associated with mortality. Moreover, uric acid can improve the predictability of a well-established risk score.
Collapse
|