1
|
Wang M, Wang W, Guo L, Tan S, Xue H, Wang Y, Cao X, Chang M, Shi K, Nie Y, Yang Y, Sha Z. Seaweed residue hydrolysate enhances the intestinal health, immunity and disease resistance in northern snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2025; 157:110115. [PMID: 39793910 DOI: 10.1016/j.fsi.2025.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Seaweed residue hydrolysate (SRH), produced by the acid hydrolysis of seaweed processing residues, is rich in bioactive compounds. The development and utilization of SRH as an aquatic immune enhancer not only achieves high-value utilization of waste but also promotes green and healthy aquaculture. In this study, northern snakehead (Channa argus) juveniles fed a compound feed supplemented with SRH (treatment group) exhibited a significant enhancement in intestinal microbial diversity and the proliferation of beneficial bacteria after eight weeks. After Edwardsiella tarda infection, the survival of the treatment group (70 %) was significantly higher than that in the control group (30 %). Histological analysis revealed that SRH alleviated tissue damage incurred by bacterial infection. Compared to the control group, the treatment group demonstrated an increase in the activities of non-specific immune enzymes and antioxidant enzymes, as well as a decrease in malondialdehyde (MDA). Furthermore, SRH influenced intestinal gene expression, with differentially expressed genes (DEGs) being enriched in various immune-related pathways, including cAMP, intestinal immune network for IgA production, and NF-κB signaling pathways. The present study has elucidated the potential efficacy of SRH in mitigating oxidative stress, enhancing the immunity and disease resistance of northern snakehead, providing valuable insights into the high-value utilization of SRH as a sustainable and eco-friendly immune enhancer in aquaculture.
Collapse
Affiliation(s)
- Minmin Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Lei Guo
- Research Center for High-Value Utilization of Waste Biomass, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Hongtao Xue
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ya Wang
- Weishan Fishery Development Service Center, Jining, 277600, China
| | - Xiao Cao
- Weishan Fishery Development Service Center, Jining, 277600, China
| | - Mengyang Chang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yanzhao Nie
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yingming Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Chibante FO, Faria AC, Ribeiro-Alves M, da Costa CH, Lopes AJ, Mafort TT, Rufino R. Questionnaire and polysomnographic evaluation of obstructive sleep apnea in a cohort of post-COVID-19 patients. Medicine (Baltimore) 2024; 103:e38838. [PMID: 39298628 PMCID: PMC11404965 DOI: 10.1097/md.0000000000038838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 09/22/2024] Open
Abstract
To evaluate the efficiency of 5 screening questionnaires for obstructive sleep apnea (OSA), OSA frequency, and the association between OSA and COVID-19 severity in recent COVID-19 cases, and to compare the use of the oxygen desaturation index (ODI) as an alternative measure for the respiratory disturbance index (RDI). This open cohort study recruited patients with recent COVID-19 (within 30-180 days) diagnosed using reverse transcription polymerase chain reaction. Participants were screened for OSA using the following 5 sleep disorder questionnaires prior to undergoing type I polysomnography: the Sleep Apnea Clinical Score (SACS), Epworth Sleepiness Scale (ESS), STOP-Bang score, No-Apnea score, and Berlin questionnaire. Polysomnography revealed that 77.5% of the participants had OSA and that these patients exhibited higher COVID-19-related hospitalization (58%) than those exhibited by non-apneic patients. The Kappa coefficient showed reasonable agreement between RDI > 5/h and No-Apnea score, RDI > 15/h and Berlin questionnaire score, and Epworth Sleepiness Scale and STOP-Bang score, but only moderate agreement between RDI > 15/h and No-Apnea score. An OSA-positive No-Apnea score increased the specificity of the SACS to 100% when RDI > 5/h. The intraclass correlation coefficient showed 95.2% agreement between RDI > 5/h and ODI > 10/h. The sequential application of the No-Apnea score and SACS was the most efficient screening method for OSA, which had a moderately high incidence among the post-COVID-19 group. We demonstrated an association between OSA and COVID-19 related hospitalization and that ODI could be a simple method with good performance for diagnosing OSA in this population.
Collapse
|
3
|
Maleksabet H, Rezaee E, Tabatabai SA. Host-Cell Surface Binding Targets in SARS-CoV-2 for Drug Design. Curr Pharm Des 2022; 28:3583-3591. [PMID: 36420875 DOI: 10.2174/1381612829666221123111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a major public health threat to all countries worldwide. SARS-CoV-2 interactions with its receptor are the first step in the invasion of the host cell. The coronavirus spike protein (S) is crucial in binding to receptors on host cells. Additionally, targeting the SARS-CoV-2 viral receptors is considered a therapeutic option in this regard. In this review of literature, we summarized five potential host cell receptors, as host-cell surface bindings, including angiotensin-converting enzyme 2 (ACE2), neuropilin 1 (NRP-1), dipeptidyl peptidase 4 (DPP4), glucose regulated protein-78 (GRP78), and cluster of differentiation 147 (CD147) related to the SARS-CoV-2 infection. Among these targets, ACE2 was recognized as the main SARS-CoV-2 receptor, expressed at a low/moderate level in the human respiratory system, which is also involved in SARS-CoV-2 entrance, so the virus may utilize other secondary receptors. Besides ACE2, CD147 was discovered as a novel SARS-CoV-2 receptor, CD147 appears to be an alternate receptor for SARSCoV- 2 infection. NRP-1, as a single-transmembrane glycoprotein, has been recently found to operate as an entrance factor and enhance SARS Coronavirus 2 (SARS-CoV-2) infection under in-vitro. DPP4, which was discovered as the first gene clustered with ACE2, may serve as a potential SARS-CoV-2 spike protein binding target. GRP78 could be recognized as a secondary receptor for SARS-CoV-2 because it is widely expressed at substantially greater levels, rather than ACE2, in bronchial epithelial cells and the respiratory mucosa. This review highlights recent literature on this topic.
Collapse
Affiliation(s)
- Hanieh Maleksabet
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Gallo CG, Fiorino S, Posabella G, Antonacci D, Tropeano A, Pausini E, Pausini C, Guarniero T, Hong W, Giampieri E, Corazza I, Federico L, de Biase D, Zippi M, Zancanaro M. COVID-19, what could sepsis, severe acute pancreatitis, gender differences, and aging teach us? Cytokine 2021; 148:155628. [PMID: 34411989 PMCID: PMC8343368 DOI: 10.1016/j.cyto.2021.155628] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a potentially life-threatening disease, defined as Coronavirus Disease 19 (COVID-19). The most common signs and symptoms of this pathological condition include cough, fever, shortness of breath, and sudden onset of anosmia, ageusia, or dysgeusia. The course of COVID-19 is mild or moderate in more than 80% of cases, but it is severe or critical in about 14% and 5% of infected subjects respectively, with a significant risk of mortality. SARS-CoV-2 related infection is characterized by some pathogenetic events, resembling those detectable in other pathological conditions, such as sepsis and severe acute pancreatitis. All these syndromes are characterized by some similar features, including the coexistence of an exuberant inflammatory- as well as an anti-inflammatory-response with immune depression. Based on current knowledge concerning the onset and the development of acute pancreatitis and sepsis, we have considered these syndromes as a very interesting paradigm for improving our understanding of pathogenetic events detectable in patients with COVID-19. The aim of our review is: 1)to examine the pathogenetic mechanisms acting during the emergence of inflammatory and anti-inflammatory processes in human pathology; 2)to examine inflammatory and anti-inflammatory events in sepsis, acute pancreatitis, and SARS-CoV-2 infection and clinical manifestations detectable in patients suffering from these syndromes also according to the age and gender of these individuals; as well as to analyze the possible common and different features among these pathological conditions; 3)to obtain insights into our knowledge concerning COVID-19 pathogenesis. This approach may improve the management of patients suffering from this disease and it may suggest more effective diagnostic approaches and schedules of therapy, depending on the different phases and/or on the severity of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Claudio G Gallo
- Emilian Physiolaser Therapy Center, Castel S. Pietro Terme, Bologna, Italy.
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | | - Donato Antonacci
- Medical Science Department, "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo (FG), Italy
| | | | | | | | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, The People's Republic of China
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Lari Federico
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | | |
Collapse
|
5
|
Oh KK, Adnan M, Cho DH. Network pharmacology approach to decipher signaling pathways associated with target proteins of NSAIDs against COVID-19. Sci Rep 2021; 11:9606. [PMID: 33953223 PMCID: PMC8100301 DOI: 10.1038/s41598-021-88313-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) showed promising clinical efficacy toward COVID-19 (Coronavirus disease 2019) patients as potent painkillers and anti-inflammatory agents. However, the prospective anti-COVID-19 mechanisms of NSAIDs are not evidently exposed. Therefore, we intended to decipher the most influential NSAIDs candidate(s) and its novel mechanism(s) against COVID-19 by network pharmacology. FDA (U.S. Food & Drug Administration) approved NSAIDs (19 active drugs and one prodrug) were used for this study. Target proteins related to selected NSAIDs and COVID-19 related target proteins were identified by the Similarity Ensemble Approach, Swiss Target Prediction, and PubChem databases, respectively. Venn diagram identified overlapping target proteins between NSAIDs and COVID-19 related target proteins. The interactive networking between NSAIDs and overlapping target proteins was analyzed by STRING. RStudio plotted the bubble chart of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of overlapping target proteins. Finally, the binding affinity of NSAIDs against target proteins was determined through molecular docking test (MDT). Geneset enrichment analysis exhibited 26 signaling pathways against COVID-19. Inhibition of proinflammatory stimuli of tissues and/or cells by inactivating the RAS signaling pathway was identified as the key anti-COVID-19 mechanism of NSAIDs. Besides, MAPK8, MAPK10, and BAD target proteins were explored as the associated target proteins of the RAS. Among twenty NSAIDs, 6MNA, Rofecoxib, and Indomethacin revealed promising binding affinity with the highest docking score against three identified target proteins, respectively. Overall, our proposed three NSAIDs (6MNA, Rofecoxib, and Indomethacin) might block the RAS by inactivating its associated target proteins, thus may alleviate excessive inflammation induced by SARS-CoV-2.
Collapse
Affiliation(s)
- Ki Kwang Oh
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Md Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Dong Ha Cho
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Korea.
| |
Collapse
|
6
|
Choksi TT, Zhang H, Chen T, Malhotra N. Outcomes of Hospitalized COVID-19 Patients Receiving Renin Angiotensin System Blockers and Calcium Channel Blockers. Am J Nephrol 2021; 52:250-260. [PMID: 33827074 PMCID: PMC8089461 DOI: 10.1159/000515232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Use of certain antihypertensive medications has been an area of interest during the COVID-19 pandemic, and several hypotheses have been developed regarding the effects of renin-angiotensin system blockers as well as calcium channel blockers in those infected with COVID-19. We seek to determine the association between exposure to ACEI, ARB, and CCB and outcomes in those admitted to the hospital with COVID-19 infection. METHODS This retrospective cohort study included 841 adult patients hospitalized with COVID-19 infection at the University of Chicago Medical Center between March 25 and June 22, 2020. Out of these 841, 453 patients had a personal history of hypertension. For the first part, we evaluated primary outcomes of in-hospital mortality and ICU admission in hospitalized COVID-19 patients based on their exposure to particular medications regardless of a personal history of hypertension and compared them with those who were not on these medications. For the second part, we evaluated the aforementioned outcomes in 453 patients with a personal history of hypertension based on their medication exposure. Secondary outcomes of length of stay, readmission rate, and new-onset dialysis requirement were also compared across the study groups. RESULTS Out of 841 patients, 111 (13.19%) were on ACEI/ARB (median age: 66.1, SD 15.4; 52.25% females) and 730 (86.80%) were not on them (median age: 56.6, SD 20.3; 50.14% females), while 277 (32.93%) used CCB (median age: 64.6, SD 15.2; 57.04% females) and 564 (67.06%) did not use CCB (median age: 54.6, SD 21.2; 47.16% females). After adjusting for demographics and covariates, neither ACEI/ARB nor CCB exposure was associated with any effect on mortality, but ACEI/ARB exposure was associated with 42% reduction in risk of ICU admissions (OR 0.58, 95% CI [0.35, 0.95], p value 0.03). In addition, combined use of ACEI/ARB and CCB was associated with statistically significant (45%) reduction in ICU admission (OR 0.55, 95% CI [0.32, 0.94], p value 0.029). Out of 453 patients with a personal history of hypertension, 85 (18.76%) were taking ACEI/ARB (median age 65, SD 15.6; 56.47% females) and 368 (81.24%) were not on ACEI/ARB (median age 62.8, SD 16.4; 54.89% females), while 208 (45.92%) out of 453 were on CCB (median age 65; SD 14.8; 60.1% females) and 245 (54.08%) were not on CCB (median age 61.7, SD 17.3; 51.02% females). In the fully adjusted model in this group, ACEI use was associated with 71% reduction in in-house mortality (OR 0.29, 95% CI [0.09, 0.93], p value 0.03). DISCUSSION/CONCLUSION Among all hospitalized patients with COVID-19 infection, exposure to ACEI/ARB, as well as combined exposure to ACEI/ARB and CCB, were associated with reduced incidence of ICU admissions. In those admitted patients who had a personal history of hypertension, there was a trend towards reduced in-hospital mortality in those exposed to ACEI.
Collapse
Affiliation(s)
- Tatvam T. Choksi
- Department of Hospital Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
- * Tatvam Choksi,
| | - Hui Zhang
- The Center for Health and the Social Sciences, The University of Chicago, Chicago, Illinois, USA
| | - Thomas Chen
- Department of Hospital Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| | - Nikhil Malhotra
- Department of Hospital Medicine, The University of Chicago Medical Center, Chicago, Illinois, USA
| |
Collapse
|
7
|
Lordan R. Notable Developments for Vitamin D Amid the COVID-19 Pandemic, but Caution Warranted Overall: A Narrative Review. Nutrients 2021; 13:740. [PMID: 33652653 PMCID: PMC7996924 DOI: 10.3390/nu13030740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel contagion that has infected over 113 million people worldwide. It is responsible for the coronavirus disease (COVID-19), which has cost the lives of 2.5 million people. Ergo, the global scientific community has been scrambling to repurpose or develop therapeutics to treat COVID-19. Dietary supplements and nutraceuticals are among those under consideration due to the link between nutritional status and patient outcomes. Overall, poor vitamin D status seems to be associated with an increased risk of COVID-19. Severely ill COVID-19 patients appear to be deficient or have suboptimal levels of serum 25-hydroxyvitamin D, a measure of vitamin D status. Consequently, vitamin D is now the subject of several prophylactic and therapeutic clinical trials. In this review, the general status of nutraceuticals and dietary supplements amid the pandemic is appraised, with a particular focus on vitamin D. Consumers should be aware of misinformation and unsubstantiated promises for products marketed for COVID-19 protection. However, maintaining a healthy diet and lifestyle will likely maintain health including optimum immune function that may affect patient outcomes. Those who are deficient in key nutrients such as vitamin D should consider lifestyle changes and potentially supplementation in consultation with their physician and/or registered dieticians.
Collapse
Affiliation(s)
- Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| |
Collapse
|
8
|
Krishnamurthy S, Lockey RF, Kolliputi N. Soluble ACE2 as a potential therapy for COVID-19. Am J Physiol Cell Physiol 2021; 320:C279-C281. [PMID: 33502950 PMCID: PMC7938633 DOI: 10.1152/ajpcell.00478.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soluble angiotensin-converting enzyme 2 (sACE2) could be a therapeutic option to treat coronavirus disease 2019 (COVID-19) infection. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes ACE2 receptors on cell surfaces to gain intracellular entry, making them an ideal target for therapy. High-affinity variants of sACE2, engineered using high-throughput mutagenesis, are capable of neutralizing COVID-19 infection as decoy receptors. These variants compete with native ACE2 present on cells by binding with spike (S) protein of SARS-CoV-2, making native ACE2 on cell surfaces available to convert angiotensin II to angiotensin-1,7, thus alleviating the exaggerated inflammatory response associated with COVID-19 infection. This article explores the use of sACE2 as potential therapy for COVID-19 infection.
Collapse
Affiliation(s)
- Sudarshan Krishnamurthy
- Wake Forest School of Medicine, Bowman Gray Center for Medical Education, Winston-Salem, North Carolina
| | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|