1
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Heart Rhythm 2024; 21:e31-e149. [PMID: 38597857 DOI: 10.1016/j.hrthm.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society.
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece.
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil; Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France; Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain; Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA; Case Western Reserve University, Cleveland, OH, USA; Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA; Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
2
|
Zarębski Ł, Futyma P. Short-term deceleration capacity: a novel non-invasive indicator of parasympathetic activity in patients undergoing pulmonary vein isolation. J Interv Card Electrophysiol 2024:10.1007/s10840-024-01899-4. [PMID: 39162917 DOI: 10.1007/s10840-024-01899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Subtypes of atrial fibrillation (AF) can differ, and exact mechanisms in which patients benefit from the pulmonary vein isolation (PVI) remain not fully understood. During PVI, vagal innervation of the heart may also be affected. Thus, non-invasive methods of intraprocedural assessment of such PVI impact are sought. METHODS From 1-minute ECG recordings performed before and after PVI, we investigated short-term deceleration capacity (ST-DC) and short-term heart rate variability (ST-HRV) to determine their potential as indicators of parasympathetic activity before and after ablation. RESULTS In 24 consecutive patients with paroxysmal AF included in the study, there were a significant differences in ST-DC and ST-HRV parameters measured before and after PVI. After 3 months, patients with baseline ST-DC ≥ 7.5 ms were less likely to experience AF recurrence when compared to patients with baseline ST-DC < 7.5 ms (0% vs 31%, p = 0.0496). There were no differences in AF recurrence after 12 months of follow-up (36% vs 38%, p = 0.52). CONCLUSION PVI leads to significant changes in ST-DC and ST-HRV, and these parameters can serve as indicators of vagal denervation after AF ablation. Patients with more prominent baseline ST-DC are less likely to experience AF recurrence during the post-PVI 3-month blanking period.
Collapse
Affiliation(s)
- Łukasz Zarębski
- St. Joseph's Heart Rhythm Center, Anny Jagiellonki 17, 35-623, Rzeszów, Poland.
- University of Rzeszów, Rzeszów, Poland.
| | - Piotr Futyma
- St. Joseph's Heart Rhythm Center, Anny Jagiellonki 17, 35-623, Rzeszów, Poland
- University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
3
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad E, Shamloo AS, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O'Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Interv Card Electrophysiol 2024; 67:921-1072. [PMID: 38609733 DOI: 10.1007/s10840-024-01771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society (HRS), the Asia Pacific HRS, and the Latin American HRS.
Collapse
Affiliation(s)
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nikolaos Dagres
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Cardiology, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - Gerhard Hindricks
- Department of Cardiac Electrophysiology, Charité University Berlin, Berlin, Germany
| | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | - Gregory F Michaud
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología 'Ignacio Chávez', Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O'Neill
- Cardiovascular Directorate, St. Thomas' Hospital and King's College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
4
|
Shen C, Jia Z, Yu Y, Feng M, Du X, Fu G, Yu L, Wu T, Jiang Y, Jin H, Zhuo W, Gao F, Wang B, Chen S, Dai J, Fang R, Chu H. Efficacy and safety of pulsed field ablation for accessory pathways: a pilot study. Europace 2024; 26:euae139. [PMID: 38801673 PMCID: PMC11218562 DOI: 10.1093/europace/euae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
AIMS Radiofrequency ablation is used as a first-line therapy for accessory pathways (APs). However, data regarding the effects of pulsed field ablation (PFA) on APs are limited. We sought to evaluate the acute procedural and 6-month success and safety of PFA in a cohort of patients with APs. METHODS AND RESULTS A focal contact force-sensing PFA catheter was used for patients with APs. Pulsed field ablation generator generated a bipolar and biphasic waveform (±1000 V) with a duration of 100 ms from the tip of the PFA catheter. A 100% acute procedural success was achieved in 10 conscious patients with APs (7 left anterolateral, 2 left inferolateral, and 1 right posteroseptal APs) including 6 (60%) patients after an initial application. The average total ablation time was 6.3 ± 4.9 s for 4.7 ± 1.8 ablation sites (ASs), including 3.1 ± 2.4 s at targets and 3.2 ± 2.9 s at 3.2 ± 2 bolus ASs. The mean skin-to-skin time was 59.3 ± 15.5 min, and PFA catheter dwell time was 29.4 ± 7.8 min. One patient encountered transient sinus arrest during PFA due to parasympathetic overexcitation. Sinus rhythm was restored in all patients without any significant adverse events during the short-term follow-up. CONCLUSION Pulsed field ablation of APs was feasible, effective, and safe. Its efficiency was remarkable for its ultrarapid termination of AP conduction. Further studies are warranted to prove whether utilization of PFA with current parameters can extend to manifold AP ablation.
Collapse
Affiliation(s)
- Caijie Shen
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Zhenyu Jia
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Yibo Yu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Mingjun Feng
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Xianfeng Du
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Guohua Fu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Lipu Yu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Tao Wu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Yongxing Jiang
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - He Jin
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Weidong Zhuo
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Fang Gao
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Binhao Wang
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Si Chen
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Jiating Dai
- Health Science Center, Ningbo University, Ningbo 315000, China
| | - Renyuan Fang
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| | - Huimin Chu
- Cardiac Arrhythmia Center, The First Affiliated Hospital of Ningbo University, 59th Liuting Street, Haishu district, Ningbo 315000, China
| |
Collapse
|
5
|
Wichterle D, Kulakowski P. To the Editor- Cardioneuroablation: Excessive risk or excessive fear? Heart Rhythm 2024; 21:1183-1184. [PMID: 38493995 DOI: 10.1016/j.hrthm.2024.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Affiliation(s)
- Dan Wichterle
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic.
| | - Piotr Kulakowski
- Department of Cardiology, Centre of Postgraduate Medical Education, Grochowski Hospital, Warsaw, Poland
| |
Collapse
|
6
|
Chun KRJ, Miklavčič D, Vlachos K, Bordignon S, Scherr D, Jais P, Schmidt B. State-of-the-art pulsed field ablation for cardiac arrhythmias: ongoing evolution and future perspective. Europace 2024; 26:euae134. [PMID: 38848447 PMCID: PMC11160504 DOI: 10.1093/europace/euae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Pulsed field ablation (PFA) is an innovative approach in the field of cardiac electrophysiology aimed at treating cardiac arrhythmias. Unlike traditional catheter ablation energies, which use radiofrequency or cryothermal energy to create lesions in the heart, PFA utilizes pulsed electric fields to induce irreversible electroporation, leading to targeted tissue destruction. This state-of-the-art review summarizes biophysical principles and clinical applications of PFA, highlighting its potential advantages over conventional ablation methods. Clinical data of contemporary PFA devices are discussed, which combine predictable procedural outcomes and a reduced risk of thermal collateral damage. Overall, these technological developments have propelled the rapid evolution of contemporary PFA catheters, with future advancements potentially impacting patient care.
Collapse
Affiliation(s)
- Kyoung-Ryul Julian Chun
- CCB Frankfurt, Med. Klinik III, Markuskrankenhaus, Wilhelm-Epstein Str. 4, 60431 Frankfurt, Germany
- Klinik für Rhythmologie, UKSH, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, Laboratory of Biocybernetics, University of Ljubljana, Trzaska cesta 25, SI-1000 Ljubljana, Slovenia
| | - Konstantinos Vlachos
- Site Hôpital Xavier Arnozan, Bordeaux University Hospital, University of Bordeaux, Avenue du Haut-Lévêque, –Pessac, France
| | - Stefano Bordignon
- CCB Frankfurt, Med. Klinik III, Markuskrankenhaus, Wilhelm-Epstein Str. 4, 60431 Frankfurt, Germany
| | - Daniel Scherr
- Klinische Abteilung für Kardiologie, Medizinische Universität Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Pierre Jais
- Site Hôpital Xavier Arnozan, Bordeaux University Hospital, University of Bordeaux, Avenue du Haut-Lévêque, –Pessac, France
| | - Boris Schmidt
- CCB Frankfurt, Med. Klinik III, Markuskrankenhaus, Wilhelm-Epstein Str. 4, 60431 Frankfurt, Germany
| |
Collapse
|
7
|
Vio R, Forlin E, China P. Recurrences after Pulsed Field Ablation of Atrial Fibrillation: Incidence, Mechanisms, Predictors, and Comparison with Thermal Energy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:817. [PMID: 38793000 PMCID: PMC11123187 DOI: 10.3390/medicina60050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Pulsed Field Ablation (PFA) is the latest and most intriguing technology for catheter ablation of atrial fibrillation, due to its capability to generate irreversible and cardiomyocytes-selective electroporation of cell membranes by delivering microsecond-lasting high-voltage electrical fields, leading to high expectations. The first trials to assess the clinical success of PFA, reported an arrhythmia-free survival at 1-year of 78.5%, while other trials showed less enthusiastic results: 66.2% in paroxysmal and 55.1% in persistent AF. Nevertheless, real world data are encouraging. The isolation of pulmonary veins with PFA is easily achieved with 100% acute success. Systematic invasive remapping showed a high prevalence of durable pulmonary vein isolation at 75 and 90 days (range 84-96%), which were significatively lower in redo procedures (64.3%). The advent of PFA is prompting a reconsideration of the role of the autonomic nervous system in AF ablation, as PFA-related sparing of the ganglionated plexi could lead to the still undetermined effect on late arrhythmias' recurrences. Moreover, a new concept of a blanking period could be formulated with PFA, according to its different mechanism of myocardial injury, with less inflammation and less chronic fibrosis. Finally, in this review, we also compare PFA with thermal energy.
Collapse
Affiliation(s)
- Riccardo Vio
- Department of Cardiothoracic, Vascular Medicine and Intensive Care, Dell’Angelo Hospital, 30174 Mestre-Venice, Italy; (E.F.); (P.C.)
| | - Enrico Forlin
- Department of Cardiothoracic, Vascular Medicine and Intensive Care, Dell’Angelo Hospital, 30174 Mestre-Venice, Italy; (E.F.); (P.C.)
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Paolo China
- Department of Cardiothoracic, Vascular Medicine and Intensive Care, Dell’Angelo Hospital, 30174 Mestre-Venice, Italy; (E.F.); (P.C.)
| |
Collapse
|
8
|
Kautzner J. Do we have a clear end-point for cardioneuroablation? J Cardiovasc Electrophysiol 2024; 35:651-653. [PMID: 38556798 DOI: 10.1111/jce.16265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/02/2024]
Affiliation(s)
- Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
9
|
Reddy VY, Anter E, Peichl P, Rackauskas G, Petru J, Funasako M, Koruth JS, Marinskis G, Turagam M, Aidietis A, Kautzner J, Natale A, Neuzil P. First-in-human clinical series of a novel conformable large-lattice pulsed field ablation catheter for pulmonary vein isolation. Europace 2024; 26:euae090. [PMID: 38584468 PMCID: PMC11057205 DOI: 10.1093/europace/euae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
AIMS Pulsed field ablation (PFA) has significant advantages over conventional thermal ablation of atrial fibrillation (AF). This first-in-human, single-arm trial to treat paroxysmal AF (PAF) assessed the efficiency, safety, pulmonary vein isolation (PVI) durability and one-year clinical effectiveness of an 8 Fr, large-lattice, conformable single-shot PFA catheter together with a dedicated electroanatomical mapping system. METHODS AND RESULTS After rendering the PV anatomy, the PFA catheter delivered monopolar, biphasic pulse trains (5-6 s per application; ∼4 applications per PV). Three waveforms were tested: PULSE1, PULSE2, and PULSE3. Follow-up included ECGs, Holters at 6 and 12 months, and symptomatic and scheduled transtelephonic monitoring. The primary and secondary efficacy endpoints were acute PVI and post-blanking atrial arrhythmia recurrence, respectively. Invasive remapping was conducted ∼75 days post-ablation. At three centres, PVI was performed by five operators in 85 patients using PULSE1 (n = 30), PULSE2 (n = 20), and PULSE3 (n = 35). Acute PVI was achieved in 100% of PVs using 3.9 ± 1.4 PFA applications per PV. Overall procedure, transpired ablation, PFA catheter dwell and fluoroscopy times were 56.5 ± 21.6, 10.0 ± 6.0, 19.1 ± 9.3, and 5.7 ± 3.9 min, respectively. No pre-defined primary safety events occurred. Upon remapping, PVI durability was 90% and 99% on a per-vein basis for the total and PULSE3 cohort, respectively. The Kaplan-Meier estimate of one-year freedom from atrial arrhythmias was 81.8% (95% CI 70.2-89.2%) for the total, and 100% (95% CI 80.6-100%) for the PULSE3 cohort. CONCLUSION Pulmonary vein isolation (PVI) utilizing a conformable single-shot PFA catheter to treat PAF was efficient, safe, and effective, with durable lesions demonstrated upon remapping.
Collapse
Affiliation(s)
- Vivek Y Reddy
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1030, New York, NY, USA
- Department of Cardiology, Homolka Hospital, Prague, Czech Republic
| | - Elad Anter
- Division of Cardiovascular Medicine, Shamir Medical Center, Be'er Yaakov, Tel Aviv, Israel
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | | | - Jan Petru
- Department of Cardiology, Homolka Hospital, Prague, Czech Republic
| | | | - Jacob S Koruth
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1030, New York, NY, USA
| | | | - Mohit Turagam
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1030, New York, NY, USA
| | - Audrius Aidietis
- Department of Cardiology, Vilnius University, Vilnius, Lithuania
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Prague, Czech Republic
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Petr Neuzil
- Department of Cardiology, Homolka Hospital, Prague, Czech Republic
| |
Collapse
|
10
|
Tzeis S, Gerstenfeld EP, Kalman J, Saad EB, Sepehri Shamloo A, Andrade JG, Barbhaiya CR, Baykaner T, Boveda S, Calkins H, Chan NY, Chen M, Chen SA, Dagres N, Damiano RJ, De Potter T, Deisenhofer I, Derval N, Di Biase L, Duytschaever M, Dyrda K, Hindricks G, Hocini M, Kim YH, la Meir M, Merino JL, Michaud GF, Natale A, Nault I, Nava S, Nitta T, O’Neill M, Pak HN, Piccini JP, Pürerfellner H, Reichlin T, Saenz LC, Sanders P, Schilling R, Schmidt B, Supple GE, Thomas KL, Tondo C, Verma A, Wan EY. 2024 European Heart Rhythm Association/Heart Rhythm Society/Asia Pacific Heart Rhythm Society/Latin American Heart Rhythm Society expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace 2024; 26:euae043. [PMID: 38587017 PMCID: PMC11000153 DOI: 10.1093/europace/euae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/09/2024] Open
Abstract
In the last three decades, ablation of atrial fibrillation (AF) has become an evidence-based safe and efficacious treatment for managing the most common cardiac arrhythmia. In 2007, the first joint expert consensus document was issued, guiding healthcare professionals involved in catheter or surgical AF ablation. Mounting research evidence and technological advances have resulted in a rapidly changing landscape in the field of catheter and surgical AF ablation, thus stressing the need for regularly updated versions of this partnership which were issued in 2012 and 2017. Seven years after the last consensus, an updated document was considered necessary to define a contemporary framework for selection and management of patients considered for or undergoing catheter or surgical AF ablation. This consensus is a joint effort from collaborating cardiac electrophysiology societies, namely the European Heart Rhythm Association, the Heart Rhythm Society, the Asia Pacific Heart Rhythm Society, and the Latin American Heart Rhythm Society .
Collapse
Affiliation(s)
- Stylianos Tzeis
- Department of Cardiology, Mitera Hospital, 6, Erythrou Stavrou Str., Marousi, Athens, PC 151 23, Greece
| | - Edward P Gerstenfeld
- Section of Cardiac Electrophysiology, University of California, San Francisco, CA, USA
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne and Baker Research Institute, Melbourne, Australia
| | - Eduardo B Saad
- Electrophysiology and Pacing, Hospital Samaritano Botafogo, Rio de Janeiro, Brazil
- Cardiac Arrhythmia Service, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Jason G Andrade
- Department of Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | - Tina Baykaner
- Division of Cardiology and Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Universiteit Brussel (VUB), Brussels, Belgium
| | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ngai-Yin Chan
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong Special Administrative Region, China
| | - Minglong Chen
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shih-Ann Chen
- Heart Rhythm Center, Taipei Veterans General Hospital, Taipei, and Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Ralph J Damiano
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital, St. Louis, MO, USA
| | | | - Isabel Deisenhofer
- Department of Electrophysiology, German Heart Center Munich, Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Nicolas Derval
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Katia Dyrda
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | | | - Meleze Hocini
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Cardiac Electrophysiology and Stimulation Department, Fondation Bordeaux Université and Bordeaux University Hospital (CHU), Pessac-Bordeaux, France
| | - Young-Hoon Kim
- Division of Cardiology, Korea University College of Medicine and Korea University Medical Center, Seoul, Republic of Korea
| | - Mark la Meir
- Cardiac Surgery Department, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Jose Luis Merino
- La Paz University Hospital, Idipaz, Universidad Autonoma, Madrid, Spain
- Hospital Viamed Santa Elena, Madrid, Spain
| | | | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, St. David’s Medical Center, Austin, TX, USA
- Case Western Reserve University, Cleveland, OH, USA
- Interventional Electrophysiology, Scripps Clinic, San Diego, CA, USA
- Department of Biomedicine and Prevention, Division of Cardiology, University of Tor Vergata, Rome, Italy
| | - Isabelle Nault
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec (IUCPQ), Quebec, Canada
| | - Santiago Nava
- Departamento de Electrocardiología, Instituto Nacional de Cardiología ‘Ignacio Chávez’, Ciudad de México, México
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School, Tokyo, Japan
| | - Mark O’Neill
- Cardiovascular Directorate, St. Thomas’ Hospital and King’s College, London, UK
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | - Tobias Reichlin
- Department of Cardiology, Inselspital Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luis Carlos Saenz
- International Arrhythmia Center, Cardioinfantil Foundation, Bogota, Colombia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Medizinische Klinik III, Agaplesion Markuskrankenhaus, Frankfurt, Germany
| | - Gregory E Supple
- Cardiac Electrophysiology Section, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Claudio Tondo
- Department of Clinical Electrophysiology and Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Atul Verma
- McGill University Health Centre, McGill University, Montreal, Canada
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
11
|
Kulakowski P, Baran J, Sikorska A, Krynski T, Niedzwiedz M, Soszynska M, Piotrowski R. Cardioneuroablation for reflex asystolic syncope: Mid-term safety, efficacy, and patient's acceptance. Heart Rhythm 2024; 21:282-291. [PMID: 38036236 DOI: 10.1016/j.hrthm.2023.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Cardioneuroablation (CNA) is a promising therapy for reflex asystolic syncope; however, convincing data on the mid-term safety and efficacy of this procedure are lacking. OBJECTIVE The purpose of this study was to assess the mid-term safety, efficacy, and patient acceptance of CNA. METHODS This prospective observational single-center study included 115 consecutive patients (mean age 39 ± 13 years; 58% female) treated between 2016 and 2022 who completed at least 1-year follow-up. RESULTS No significant procedure-related acute complications occurred. During median follow-up of 28 months (range 12-75), 95 (83%) remained free from syncope. Of the 20 patients (17%) with syncope recurrence, syncope burden decreased from a mean 17 (median 6.5) to 3.75 (median 2.5) episodes (P = .015). In 9 of 10 patients, pacing system removal was possible. Repeated CNA was needed in 3 patients (3%), whereas pacemaker implantation was performed in 5 (4%). The most frequent mid-term complication of CNA was sinus rhythm acceleration (from 60 ± 14 bpm to 90 ± 16 bpm; P <.0001), which was symptomatic in 31 patients (27%); 8 patients (7%) required chronic beta-blocker and/or ivabradine. Sinus node modification was necessary in 1 patient. Other complaints included dyspnea, chronic chest pain, and decreased exercise capacity, which were mild and reported by 16 patients (14%). Patient acceptance of CNA was very high: 96% stated that it was worth undergoing the procedure. CONCLUSIONS Mid-term efficacy of CNA exceeds 80%, and acute complications are absent. The most frequent mid-term chronic complication is inappropriate sinus tachycardia, which in 7% required chronic treatment. The procedure is well accepted by patients.
Collapse
Affiliation(s)
- Piotr Kulakowski
- Centre of Postgraduate Medical Education, Department of Cardiology, Grochowski Hospital, Warsaw, Poland
| | - Jakub Baran
- Centre of Postgraduate Medical Education, Department of Cardiology, Grochowski Hospital, Warsaw, Poland
| | - Agnieszka Sikorska
- Centre of Postgraduate Medical Education, Department of Cardiology, Grochowski Hospital, Warsaw, Poland
| | - Tomasz Krynski
- Centre of Postgraduate Medical Education, Department of Cardiology, Grochowski Hospital, Warsaw, Poland
| | - Michal Niedzwiedz
- Centre of Postgraduate Medical Education, Department of Cardiology, Grochowski Hospital, Warsaw, Poland
| | - Malgorzata Soszynska
- Centre of Postgraduate Medical Education, Department of Cardiology, Grochowski Hospital, Warsaw, Poland
| | - Roman Piotrowski
- Centre of Postgraduate Medical Education, Department of Cardiology, Grochowski Hospital, Warsaw, Poland.
| |
Collapse
|
12
|
Eberl AS, Manninger M, Rohrer U, Scherr D. Prolonged asystole after conversion to sinus rhythm during pulmonary vein isolation with pulsed field ablation: A case report. HeartRhythm Case Rep 2024; 10:146-150. [PMID: 38404973 PMCID: PMC10885723 DOI: 10.1016/j.hrcr.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Affiliation(s)
- Anna-Sophie Eberl
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Martin Manninger
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Ursula Rohrer
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Daniel Scherr
- Division of Cardiology, Department of Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Chinyere IR, Mori S, Hutchinson MD. Cardiac blood vessels and irreversible electroporation: findings from pulsed field ablation. VESSEL PLUS 2024; 8:7. [PMID: 38646143 PMCID: PMC11027649 DOI: 10.20517/2574-1209.2023.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The clinical use of irreversible electroporation in invasive cardiac laboratories, termed pulsed field ablation (PFA), is gaining early enthusiasm among electrophysiologists for the management of both atrial and ventricular arrhythmogenic substrates. Though electroporation is regularly employed in other branches of science and medicine, concerns regarding the acute and permanent vascular effects of PFA remain. This comprehensive review aims to summarize the preclinical and adult clinical data published to date on PFA's effects on pulmonary veins and coronary arteries. These data will be contrasted with the incidences of iatrogenic pulmonary vein stenosis and coronary artery injury secondary to thermal cardiac ablation modalities, namely radiofrequency energy, laser energy, and liquid nitrogen-based cryoablation.
Collapse
Affiliation(s)
- Ikeotunye Royal Chinyere
- Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
- Banner University Medicine, Banner Health, Tucson, AZ 85719, USA
| | - Shumpei Mori
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Mathew D. Hutchinson
- Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
- Banner University Medicine, Banner Health, Tucson, AZ 85719, USA
| |
Collapse
|
14
|
Mansour M. Letter from the Editor in Chief. J Innov Card Rhythm Manag 2023; 14:A7-A8. [PMID: 38155721 PMCID: PMC10752426 DOI: 10.19102/icrm.2023.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023] Open
|
15
|
Del Monte A, Cespón Fernández M, Vetta G, Della Rocca DG, Pannone L, Mouram S, Sorgente A, Bala G, Ströker E, Sieira J, Almorad A, Sarkozy A, Chierchia GB, de Asmundis C. Quantitative assessment of transient autonomic modulation after single-shot pulmonary vein isolation with pulsed-field ablation. J Cardiovasc Electrophysiol 2023; 34:2393-2397. [PMID: 37792572 DOI: 10.1111/jce.16089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
INTRODUCTION Pulmonary vein isolation (PVI) with thermal energy is characterized by concomitant ablation of the surrounding ganglionated plexi (GP). Pulsed-field ablation (PFA) selectively targets the myocardium and seems associated with only negligible effects on the autonomic nervous system (ANS). However, little is known about the dynamic effects of PFA on the GP immediately after PVI. This study sought to investigate the degree and acute vagal modulation induced by the FarapulseTM PFA system during PVI compared with single-shot thermal ablation. METHODS A total of 76 patients underwent first-time PVI with either FarapulseTM PFA (PFA group, n = 40) or cryoballoon ablation (thermal ablation group, n = 36) for paroxysmal atrial fibrillation (AF). The effect on the ANS in the two groups was assessed before and after PVI with extracardiac vagal stimulation (ECVS). To capture any transient effects of PFA on the ANS, in a subgroup of PFA patients ECVS was repeated at three predefined timepoints: (1) before PVI (T0); (2) immediately after PVI (T1); and (3) 10 min after the last energy application (T2). RESULTS Despite similar baseline values, the vagal response induced by ECVS after PVI almost disappeared in the thermal ablation group but persisted in the PFA group (thermal group: 840 [706-1090] ms, p < .001 compared to baseline; PFA group: 11 466 [8720-12 293] ms, p = .70 compared to baseline). Intraprocedural vagal reactions (defined as RR increase >50%, transitory asystole, or atrioventricular block) occurred more frequently with PFA than thermal ablation (70% vs. 28%, p = .001). Moreover, heart rate 24 h post-PVI increased more with thermal ablation than with PFA (16.5 ± 9.0 vs. 2.6 ± 6.1 beats/min, p < .001). In the subgroup of PFA patients undergoing repeated ANS modulation assessment (n = 11), ECVS demonstrated that PFA determined a significant acute suppression of the vagal response immediately after PVI (p < .001 compared to baseline), which recovered almost completely within 10 min. CONCLUSION PVI with the FarapulseTM PFA system is associated with only transitory and short-lasting vagal effects on the ANS which recover almost completely within a few minutes after ablation. The impact of this phenomenon on AF outcome needs to be further investigated.
Collapse
Affiliation(s)
- Alvise Del Monte
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - María Cespón Fernández
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Giampaolo Vetta
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Domenico Giovanni Della Rocca
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Luigi Pannone
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Sahar Mouram
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Antonio Sorgente
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gezim Bala
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Erwin Ströker
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Juan Sieira
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Alexandre Almorad
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Andrea Sarkozy
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Gian-Battista Chierchia
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - Carlo de Asmundis
- Postgraduate Program in Cardiac Electrophysiology and Pacing, Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| |
Collapse
|
16
|
Musikantow DR, Reddy VY, Skalsky I, Shaburishvili T, van Zyl M, O'Brien B, Coffey K, Reilly J, Neuzil P, Asirvatham S, de Groot JR. Targeted ablation of epicardial ganglionated plexi during cardiac surgery with pulsed field electroporation (NEURAL AF). J Interv Card Electrophysiol 2023:10.1007/s10840-023-01615-8. [PMID: 37561246 DOI: 10.1007/s10840-023-01615-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Modulation of the cardiac autonomic nervous system (ANS) is a promising adjuvant therapy in the treatment of atrial fibrillation (AF). In pre-clinical models, pulsed field (PF) energy has the advantage of selectively ablating the epicardial ganglionated plexi (GP) that govern the ANS. This study aims to demonstrate the feasibility and safety of epicardial ablation of the GPs with PF during cardiac surgery with a primary efficacy outcome of prolongation of the atrial effective refractory period (AERP). METHODS In a single-arm, prospective analysis, patients with or without a history of AF underwent epicardial GP ablation with PF during coronary artery bypass grafting (CABG). AERP was determined immediately pre- and post- GP ablation to assess cardiac ANS function. Holter monitors were performed to determine rhythm status and heart rate variability (HRV) at baseline and at 1-month post-procedure. RESULTS Of 24 patients, 23 (96%) received the full ablation protocol. No device-related adverse effects were noted. GP ablation resulted in a 20.7 ± 19.9% extension in AERP (P < 0.001). Post-operative AF was observed in 7 (29%) patients. Holter monitoring demonstrated an increase in mean heart rate (74.0 ± 8.7 vs. 80.6 ± 12.3, P = 0.01). There were no significant changes in HRV. There were no study-related complications. CONCLUSIONS This study demonstrates the safety and feasibility of epicardial ablation of the GP using PF to modulate the ANS during cardiac surgery. Large, randomized analyses are necessary to determine whether epicardial PF ablation can offer a meaningful impact on the cardiac ANS and reduce AF. TRIAL REGISTRATION Clinical trial registration: NCT04775264.
Collapse
Affiliation(s)
- Daniel R Musikantow
- Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, Box 1030, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Vivek Y Reddy
- Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, Box 1030, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Homolka Hospital, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Schaack D, Schmidt B, Tohoku S, Bordignon S, Urbanek L, Ebrahimi R, Hirokami J, Efe TH, Chen S, Chun KRJ. Pulsed Field Ablation for Atrial Fibrillation. Arrhythm Electrophysiol Rev 2023; 12:e11. [PMID: 37427302 PMCID: PMC10326665 DOI: 10.15420/aer.2022.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/31/2023] [Indexed: 07/11/2023] Open
Abstract
Catheter ablation is a widely used, effective and safe treatment for AF. Pulsed field ablation (PFA), as a novel energy source for cardiac ablation, has been shown to be tissue selective and is expected to decrease damage to non-cardiac tissue while providing high efficacy in pulmonary vein isolation. The FARAPULSE ablation system (Boston Scientific) follows the idea of single-shot ablation and is the first device approved for clinical use in Europe. Since its approval, multiple high-volume centres have performed increasing numbers of PFA procedures in patients with AF and have published their experiences. This review summarises the current clinical experience regarding the use of PFA for AF using the FARAPULSE system. It provides an overview of its efficacy and safety.
Collapse
Affiliation(s)
- David Schaack
- Cardioangiologisches Centrum Bethanien, Frankfurt, Germany
| | - Boris Schmidt
- Cardioangiologisches Centrum Bethanien, Frankfurt, Germany
- Universitätsklinikum Frankfurt, Medizinische Klinik 3 – Klinik für Kardiologie, Frankfurt, Germany
| | - Shota Tohoku
- Cardioangiologisches Centrum Bethanien, Frankfurt, Germany
| | | | - Lukas Urbanek
- Cardioangiologisches Centrum Bethanien, Frankfurt, Germany
| | - Ramin Ebrahimi
- Cardioangiologisches Centrum Bethanien, Frankfurt, Germany
| | - Jun Hirokami
- Cardioangiologisches Centrum Bethanien, Frankfurt, Germany
| | - Tolga Han Efe
- Cardioangiologisches Centrum Bethanien, Frankfurt, Germany
| | - Shaojie Chen
- Cardioangiologisches Centrum Bethanien, Frankfurt, Germany
- Die Sektion Medizin, Universität zu Lübeck, Lübeck, Germany
| | - KR Julian Chun
- Cardioangiologisches Centrum Bethanien, Frankfurt, Germany
- Die Sektion Medizin, Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Sinus node dysfunction and atrial fibrillation-Relationships, clinical phenotypes, new mechanisms, and treatment approaches. Ageing Res Rev 2023; 86:101890. [PMID: 36813137 DOI: 10.1016/j.arr.2023.101890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023]
Abstract
Although the anatomical basis of the pathogenesis of sinus node dysfunction (SND) and atrial fibrillation (AF) is located primarily in the left and right atria, increasing evidence suggests a strong correlation between SND and AF, in terms of both clinical presentation and formation mechanisms. However, the exact mechanisms underlying this association are unclear. The relationship between SND and AF may not be causal, but is likely to involve common factors and mechanisms, including ion channel remodeling, gap junction abnormalities, structural remodeling, genetic mutations, neuromodulation abnormalities, the effects of adenosine on cardiomyocytes, oxidative stress, and viral infections. Ion channel remodeling manifests primarily as alterations in the "funny" current (If) and Ca2+ clock associated with cardiomyocyte autoregulation, and gap junction abnormalities are manifested primarily as decreased expression of connexins (Cxs) mediating electrical impulse propagation in cardiomyocytes. Structural remodeling refers primarily to fibrosis and cardiac amyloidosis (CA). Some genetic mutations can also cause arrhythmias, such as SCN5A, HCN4, EMD, and PITX2. The intrinsic cardiac autonomic nervous system (ICANS), a regulator of the heart's physiological functions, triggers arrhythmias.In addition, we discuss arrhythmias caused by viral infections, notably Coronavirus Disease 2019 (COVID-19). Similarly to upstream treatments for atrial cardiomyopathy such as alleviating CA, ganglionated plexus (GP) ablation acts on the common mechanisms between SND and AF, thus achieving a dual therapeutic effect.
Collapse
|
19
|
Chakraborty P, Po SS. The role of autonomic denervation in the success of atrial fibrillation ablation: Can pulsed-field ablation provide the answer? Heart Rhythm 2023; 20:341-342. [PMID: 36503178 DOI: 10.1016/j.hrthm.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Praloy Chakraborty
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Sunny S Po
- Heart Rhythm Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
20
|
Aksu T, Skeete JR, Huang HH. Ganglionic Plexus Ablation: A Step-by-step Guide for Electrophysiologists and Review of Modalities for Neuromodulation for the Management of Atrial Fibrillation. Arrhythm Electrophysiol Rev 2023; 12:e02. [PMID: 36845167 PMCID: PMC9945432 DOI: 10.15420/aer.2022.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
As the most common sustained arrhythmia, AF is a complex clinical entity which remains a difficult condition to durably treat in the majority of patients. Over the past few decades, the management of AF has focused mainly on pulmonary vein triggers for its initiation and perpetuation. It is well known that the autonomic nervous system (ANS) has a significant role in the milieu predisposing to the triggers, perpetuators and substrate for AF. Neuromodulation of ANS - ganglionated plexus ablation, vein of Marshall ethanol infusion, transcutaneous tragal stimulation, renal nerve denervation, stellate ganglion block and baroreceptor stimulation - constitute an emerging therapeutic approach for AF. The purpose of this review is to summarise and critically appraise the currently available evidence for neuromodulation modalities in AF.
Collapse
Affiliation(s)
- Tolga Aksu
- Department of Cardiology, Yeditepe University Hospital, Istanbul, Turkey
| | | | - Henry H Huang
- Department of Cardiology, Rush Medical College, Chicago, IL, US
| |
Collapse
|