1
|
Baker MG, Wong LSY, Konstantinou GN, Nowak-Wegrzyn A. Food allergy endotypes revisited. J Allergy Clin Immunol 2025:S0091-6749(25)00459-2. [PMID: 40306493 DOI: 10.1016/j.jaci.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025]
Abstract
In the last century, food allergy has become recognized as an increasingly prevalent and heterogeneous condition. Advances in biomedical technology have revealed complex genetic, environmental, immune, and metabolic pathways underlying the pathogenesis of food-allergic disorders. These findings permit classification of distinct food allergy endotypes with unique pathophysiologic features. In this review, we suggest that these endotypes of food-allergic disorders should be defined on the basis of (1) whether or not the allergic antibody IgE plays an essential role in disease pathogenesis, (2) the molecular features of the allergen (protein vs carbohydrate), and (3) the molecular markers associated with prognosis, severity, or clinical presentation. Beyond these broad categories, additional subtypes with unique mechanistic characteristics are discussed.
Collapse
Affiliation(s)
- Mary Grace Baker
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Lydia Su Yin Wong
- Department of Pediatrics, Hassenfeld Children's Hospital, NYU Grossman School of Medicine, New York, NY; Department of Pediatrics, National University of Singapore, Singapore; Khoo Teck Puat National University Children's Medical Institute, National University Health Systems, Singapore
| | - George N Konstantinou
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Anna Nowak-Wegrzyn
- Department of Pediatrics, Hassenfeld Children's Hospital, NYU Grossman School of Medicine, New York, NY; Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland.
| |
Collapse
|
2
|
Platts-Mills TA, Keshavarz B, Wilson JM, Rifas-Shiman SL, Ailsworth SM, Sordillo JE, Workman L, Chapman M, Lidholm J, Oken E, Gold DR. High risk of asthma among early teens is associated with quantitative differences in mite and cat allergen specific IgE and IgG4: a modified Th2 related antibody response revisited. EBioMedicine 2025; 112:105556. [PMID: 39893721 PMCID: PMC11840499 DOI: 10.1016/j.ebiom.2024.105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Although proteins derived from cats are an important contributor to indoor allergen exposure in relation to asthma, it has been known for at least twenty years that some children who live in a house with a cat can become clinically tolerant to these animals. In 2001, we reported that children exposed to high levels of cat allergens made high levels of IgG4 antibodies to the cat allergen Fel d 1, and we coined the term "a modified Th2 response". However, this phenomenon is still poorly understood. METHODS We studied serum antibodies among 616 individuals in the Viva unselected birth cohort recruited at their early teen visit (mean age 13.1 SD 0.8). IgE and IgG4 antibodies were measured by ImmunoCAP to inhaled allergens as well as the best characterised component allergens of cat, Fel d 1, Fel d 2, Fel d 4, and Fel d 7, and the dust mite allergens Der p 1, Der p 2, Der p 10, and Der p 23. FINDINGS The results confirm that young teens living in a home with a cat make high levels of IgG4 specific for cat allergens, and that those antibodies, and specifically those to Fel d 1 are negatively associated with asthma. By contrast, the IgG4 responses to Fel d 4 and Fel d 7 are significantly lower and have no significant association with asthma. Perhaps more surprisingly, a similar effect is seen in relation to dust-mite allergens. Although the allergen Der p 1 is a major part of the IgE response to mite allergens, this protein also induced high prevalence and levels of IgG4 antibodies and has a less strong relationship to asthma than IgE to Der p 2 or Der p 23. Indeed, values of specific IgE to Der p 1 >3.5 IU/mL were not significantly related to asthma (OR 1.5 CI 0.8-2.8, p = 0.3, Chi2 test). The prevalence and levels of specific IgG4 to these less abundant allergens are significantly lower for Der p 2 and almost absent for Der p 23. INTERPRETATION High exposure to specific allergens in household dust can enhance production of both sIgE and sIgG4 antibodies, while allergens where abundance is significantly lower in dust can induce sIgE with limited or no sIgG4. The result is that the less abundant allergens, i.e., Fel d 4, Fel d 7, Der p 2, and Der p 23, may have a significantly higher relevance to asthma than expected because they induce less sIgG4. FUNDING This work was funded by R01-AI20565 (TPM) and support for the IgE and IgG4 assays provided by Phadia/Thermo Fisher Kalamazoo, Michigan. Project Viva is also supported by NIH R01HD034568 and R24ES.
Collapse
Affiliation(s)
- Thomas A Platts-Mills
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Behnam Keshavarz
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey M Wilson
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Sheryl L Rifas-Shiman
- The Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Samuel M Ailsworth
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Joanne E Sordillo
- The Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Lisa Workman
- Division of Allergy & Clinical Immunology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | | | | | - Emily Oken
- The Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Diane R Gold
- The Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; The Department of Environmental Medicine, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Keswani T, LaHood NA, Marini-Rapoport O, Karmakar B, Andrieux L, Reese B, Sneed SL, Pedersen LC, Mueller GA, Patil SU. Neutralizing IgG 4 antibodies are a biomarker of sustained efficacy after peanut oral immunotherapy. J Allergy Clin Immunol 2024; 153:1611-1620.e7. [PMID: 38460677 PMCID: PMC11894811 DOI: 10.1016/j.jaci.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Clinical efficacy of oral immunotherapy (OIT) has been associated with the induction of blocking antibodies, particularly those capable of disrupting IgE-allergen interactions. Previously, we identified mAbs to Ara h 2 and structurally characterized their epitopes. OBJECTIVE We investigated longitudinal changes during OIT in antibody binding to conformational epitopes and correlated the results with isotype and clinical efficacy. METHODS We developed an indirect inhibitory ELISA using mAbs to block conformational epitopes on immobilized Ara h 2 from binding to serum immunoglobulins from peanut-allergic patients undergoing OIT. We tested the functional blocking ability of mAbs using passive cutaneous anaphylaxis in mice with humanized FcεRI receptors. RESULTS Diverse serum IgE recognition of Ara h 2 conformational epitopes are similar before and after OIT. Optimal inhibition of serum IgE occurs with the combination of 2 neutralizing mAbs (nAbs) recognizing epitopes 1.2 and 3, compared to 2 nonneutralizing mAbs (non-nAbs). After OIT, IgG4 nAbs, but not IgG1 or IgG2 nAbs, increased in sustained compared to transient outcomes. Induction of IgG4 nAbs occurs after OIT only in those with sustained efficacy. Murine passive cutaneous anaphylaxis after sensitization with pooled human sera is significantly inhibited by nAbs compared to non-nAbs. CONCLUSIONS Serum IgE conformational epitope diversity remains unchanged during OIT. However, IgG4 nAbs capable of uniquely disrupting IgE-allergen interactions to prevent effector cell activation are selectively induced in OIT-treated individuals with sustained clinical efficacy. Therefore, the induction of neutralizing IgG4 antibodies to Ara h 2 are clinically relevant biomarkers of durable efficacy in OIT.
Collapse
Affiliation(s)
- Tarun Keswani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Nicole A LaHood
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Orlee Marini-Rapoport
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Bijoya Karmakar
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Léna Andrieux
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass; Master de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Brian Reese
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Sunny L Sneed
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| | - Geoffrey A Mueller
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC
| | - Sarita U Patil
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Mass.
| |
Collapse
|
4
|
Marini-Rapoport O, Fernández-Quintero ML, Keswani T, Zong G, Shim J, Pedersen LC, Mueller GA, Patil SU. Defining the cross-reactivity between peanut allergens Ara h 2 and Ara h 6 using monoclonal antibodies. Clin Exp Immunol 2024; 216:25-35. [PMID: 38346116 PMCID: PMC10929694 DOI: 10.1093/cei/uxae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In peanut allergy, Arachis hypogaea 2 (Ara h 2) and Arachis hypogaea 6 (Ara h 6) are two clinically relevant peanut allergens with known structural and sequence homology and demonstrated cross-reactivity. We have previously utilized X-ray crystallography and epitope binning to define the epitopes on Ara h 2. We aimed to quantitatively characterize the cross-reactivity between Ara h 2 and Ara h 6 on a molecular level using human monoclonal antibodies (mAbs) and structural characterization of allergenic epitopes. We utilized mAbs cloned from Ara h 2 positive single B cells isolated from peanut-allergic, oral immunotherapy-treated patients to quantitatively analyze cross-reactivity between recombinant Ara h 2 (rAra h 2) and Ara h 6 (rAra h 6) proteins using biolayer interferometry and indirect inhibitory ELISA. Molecular dynamics simulations assessed time-dependent motions and interactions in the antibody-antigen complexes. Three epitopes-conformational epitopes 1.1 and 3, and the sequential epitope KRELRNL/KRELMNL-are conserved between Ara h 2 and Ara h 6, while two more conformational and three sequential epitopes are not. Overall, mAb affinity was significantly lower to rAra h 6 than it was to rAra h 2. This difference in affinity was primarily due to increased dissociation of the antibodies from rAra h 6, a phenomenon explained by the higher conformational flexibility of the Ara h 6-antibody complexes in comparison to Ara h 2-antibody complexes. Our results further elucidate the cross-reactivity of peanut 2S albumins on a molecular level and support the clinical immunodominance of Ara h 2.
Collapse
Affiliation(s)
- Orlee Marini-Rapoport
- Harvard University, Cambridge, MA, USA
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | | | - Tarun Keswani
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Guangning Zong
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jane Shim
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Lars C Pedersen
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Sarita U Patil
- Food Allergy Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Yan Y, Li L, Long C, Dong Y, Li J, Shen C, Zhao Y, Zhao J, Wang J, Xiong A, Li X, Chen H, He S. A novel IgE epitope-specific antibodies-based sandwich ELISA for sensitive measurement of immunoreactivity changes of peanut allergen Ara h 2 in processed foods. Front Nutr 2024; 11:1323553. [PMID: 38439921 PMCID: PMC10910080 DOI: 10.3389/fnut.2024.1323553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Background Peanut is an important source of dietary protein for human beings, but it is also recognized as one of the eight major food allergens. Binding of IgE antibodies to specific epitopes in peanut allergens plays important roles in initiating peanut-allergic reactions, and Ara h 2 is widely considered as the most potent peanut allergen and the best predictor of peanut allergy. Therefore, Ara h 2 IgE epitopes can serve as useful biomarkers for prediction of IgE-binding variations of Ara h 2 and peanut in foods. This study aimed to develop and validate an IgE epitope-specific antibodies (IgE-EsAbs)-based sandwich ELISA (sELISA) for detection of Ara h 2 and measurement of Ara h 2 IgE-immunoreactivity changes in foods. Methods DEAE-Sepharose Fast Flow anion-exchange chromatography combining with SDS-PAGE gel extraction were applied to purify Ara h 2 from raw peanut. Hybridoma and epitope vaccine techniques were employed to generate a monoclonal antibody against a major IgE epitope of Ara h 2 and a polyclonal antibody against 12 IgE epitopes of Ara h 2, respectively. ELISA was carried out to evaluate the target binding and specificity of the generated IgE-EsAbs. Subsequently, IgE-EsAbs-based sELISA was developed to detect Ara h 2 and its allergenic residues in food samples. The IgE-binding capacity of Ara h 2 and peanut in foods was determined by competitive ELISA. The dose-effect relationship between the Ara h 2 IgE epitope content and Ara h 2 (or peanut) IgE-binding ability was further established to validate the reliability of the developed sELISA in measuring IgE-binding variations of Ara h 2 and peanut in foods. Results The obtained Ara h 2 had a purity of 94.44%. Antibody characterization revealed that the IgE-EsAbs recognized the target IgE epitope(s) of Ara h 2 and exhibited high specificity. Accordingly, an IgE-EsAbs-based sELISA using these antibodies was able to detect Ara h 2 and its allergenic residues in food samples, with high sensitivity (a limit of detection of 0.98 ng/mL), accuracy (a mean bias of 0.88%), precision (relative standard deviation < 16.50%), specificity, and recovery (an average recovery of 98.28%). Moreover, the developed sELISA could predict IgE-binding variations of Ara h 2 and peanut in foods, as verified by using sera IgE derived from peanut-allergic individuals. Conclusion This novel immunoassay could be a user-friendly method to monitor low level of Ara h 2 and to preliminary predict in vitro potential allergenicity of Ara h 2 and peanut in processed foods.
Collapse
Affiliation(s)
- Yan Yan
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Liming Li
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Caiyun Long
- Department of Laboratory, Ganzhou Center for Disease Control and Prevention, Ganzhou, China
| | - Yaping Dong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jinyu Li
- Department of Dermatology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Caiyi Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yiqian Zhao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jiangqiang Zhao
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jianbin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Anqi Xiong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Shengfa He
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
- Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Lee ASE, Suprun M, Sampson H. Epitope-Based IgE Assays and Their Role in Providing Diagnosis and Prognosis of Food Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2983-2988. [PMID: 37394177 DOI: 10.1016/j.jaip.2023.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
With advances in molecular and computational science, epitope-specific IgE antibody profiling has been developed and recently brought into clinical practice. Epitope-based testing detects IgE antibodies that directly bind to antigenic sites of an allergen, providing increased resolution specificity and fewer false-positive results for diagnosing food allergy. Epitope-binding profiles may also serve as prognostic markers of food allergy and help predict quantities of allergen that would provoke a reaction (ie, eliciting dose, possible severity of a reaction after allergen ingestion, and outcomes of treatment options such as oral immunotherapy [OIT]). Future studies are under way to discover additional applications of epitope-specific antibodies for multiple food allergens.
Collapse
Affiliation(s)
- Ashley Sang Eun Lee
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Maria Suprun
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY; Janssen R&D, Spring House, Pa
| | - Hugh Sampson
- Division of Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
7
|
Ding J, Zhu C, Jiang P, Qi L, Sun N, Lin S. Antarctic krill antioxidant peptides show inferior IgE-binding ability and RBL-2H3 cell degranulation. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
8
|
Zhang Y, Che H, Li C, Jin T. Food Allergens of Plant Origin. Foods 2023; 12:foods12112232. [PMID: 37297475 DOI: 10.3390/foods12112232] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
This review presents an update on the physical, chemical, and biological properties of food allergens in plant sources, focusing on the few protein families that contribute to multiple food allergens from different species and protein families recently found to contain food allergens. The structures and structural components of the food allergens in the allergen families may provide further directions for discovering new food allergens. Answers as to what makes some food proteins allergens are still elusive. Factors to be considered in mitigating food allergens include the abundance of the protein in a food, the property of short stretches of the sequence of the protein that may constitute linear IgE binding epitopes, the structural properties of the protein, its stability to heat and digestion, the food matrix the protein is in, and the antimicrobial activity to the microbial flora of the human gastrointestinal tract. Additionally, recent data suggest that widely used techniques for mapping linear IgE binding epitopes need to be improved by incorporating positive controls, and methodologies for mapping conformational IgE binding epitopes need to be developed.
Collapse
Affiliation(s)
- Yuzhu Zhang
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Caiming Li
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
9
|
Hsu FC, Lin WT, Hsieh KC, Cheng KC, Wu JSB, Ting Y. Mitigating the allergenicity of peanut allergen Ara h 1 by cold atmospheric pressure argon plasma jet. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3017-3027. [PMID: 36646652 DOI: 10.1002/jsfa.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Peanut allergy is recognized as a major food allergy that triggers severe and even fatal symptoms. Avoidance of peanuts in the diet is the main option for current safety management. Processing techniques reducing peanut allergenicity are required to develop other options. Cold plasma is currently considered as a novel non-thermal approach to alter protein structure and has the potential to alleviate immunoreactivity of protein allergen. RESULTS The application of a cold argon plasma jet to peanut protein extract could reduce the amount of a 64 kDa protein band corresponding to a major peanut allergen Ara h 1 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but the overall protein size distribution did not change significantly. A decrease in peanut protein solubility was a possible cause that led to the loss of protein content in the soluble fraction. Immunoblotting and enzyme-linked immunosorbent assay elucidated that the immunoreactivity of Ara h 1 was significantly decreased with the time treated with plasma. Ara h 1 antigenicity reduced by 38% after five scans (approximately 3 min) of cold argon plasma jet treatment, and the reduction was up to 66% after approximately 15 min of treatment. CONCLUSION The results indicate that cold argon plasma jet treatment could be a suitable platform for alleviating the immunoreactivity of peanut protein. This work demonstrates an efficient, compact, and rapid platform for mitigating the allergenicity of peanuts, and shows great potential for the plasma platform as a non-thermal technique in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fu-Chiun Hsu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Wan-Ting Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Department of Optometry, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - James Swi-Bea Wu
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yuwen Ting
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
11
|
LaHood NA, Min J, Keswani T, Richardson CM, Amoako K, Zhou J, Marini-Rapoport O, Bernard H, Hazebrouck S, Shreffler WG, Love JC, Pomes A, Pedersen LC, Mueller GA, Patil SU. Immunotherapy-induced neutralizing antibodies disrupt allergen binding and sustain allergen tolerance in peanut allergy. J Clin Invest 2023; 133:e164501. [PMID: 36647835 PMCID: PMC9843057 DOI: 10.1172/jci164501] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/15/2022] [Indexed: 01/18/2023] Open
Abstract
In IgE-mediated food allergies, exposure to the allergen activates systemic allergic responses. Oral immunotherapy (OIT) treats food allergies through incremental increases in oral allergen exposure. However, OIT only induces sustained clinical tolerance and decreased basophil sensitivity in a subset of individuals despite increases in circulating allergen-specific IgG in all treated individuals. Therefore, we examined the allergen-specific antibodies from 2 OIT cohorts of patients with sustained and transient responses. Here, we compared antibodies from individuals with sustained or transient responses and discovered specific tolerance-associated conformational epitopes of the immunodominant allergen Ara h 2 recognized by neutralizing antibodies. First, we identified what we believe to be previously unknown conformational, intrahelical epitopes using x-ray crystallography with recombinant antibodies. We then identified epitopes only recognized in sustained tolerance. Finally, antibodies recognizing tolerance-associated epitopes effectively neutralized allergen to suppress IgE-mediated effector cell activation. Our results demonstrate the molecular basis of antibody-mediated protection in IgE-mediated food allergy, by defining how these antibodies disrupt IgE-allergen interactions to prevent allergic reactions. Our approach to studying the structural and functional basis for neutralizing antibodies demonstrates the clinical relevance of specific antibody clones in antibody-mediated tolerance. We anticipate that our findings will form the foundation for treatments of peanut allergy using neutralizing antibodies and hypoallergens.
Collapse
Affiliation(s)
- Nicole A. LaHood
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jungki Min
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Tarun Keswani
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Kwasi Amoako
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jingjia Zhou
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Hervé Bernard
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Stéphane Hazebrouck
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Gif-sur-Yvette, France
| | - Wayne G. Shreffler
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | | | - Lars C. Pedersen
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Geoffrey A. Mueller
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Sarita U. Patil
- Food Allergy Center and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Martínez-Botas J, Fernández-Lozano C, Vaquero-Rey A, de la Hoz B. IgE and IgG4 Epitope Mapping of Food Allergens with a Peptide Microarray Immunoassay. Methods Mol Biol 2023; 2578:219-236. [PMID: 36152291 DOI: 10.1007/978-1-0716-2732-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Peptide microarrays are a powerful tool to identify linear epitopes of food allergens in a high-throughput manner. The main advantages of the microarray-based immunoassay are as follows: the possibility to assay thousands of targets simultaneously, the requirement of a low volume of serum, the more robust statistical analysis, and the possibility to test simultaneously several immunoglobulin subclasses. Among them, the last one has a special interest in the field of food allergy, because the development of tolerance to food allergens has been associated with a decrease in IgE and an increase in IgG4 levels against linear epitopes. However, the main limitation to the clinical use of microarray is the automated analysis of the data. Recent studies mapping the linear epitopes of food allergens with peptide microarray immunoassays have identified peptide biomarkers that can be used for early diagnosis of food allergies and to predict their severity or the self-development of tolerance. Using this approach, we have worked on epitope mapping of the two most important food allergens in the Spanish population, cow's milk, and chicken eggs. The final aim of these studies is to define subsets of peptides that could be used as biomarkers to improve the diagnosis and prognosis of food allergies. This chapter describes the protocol to produce microarrays using a library of overlapping peptides corresponding to the primary sequences of food allergens and data acquisition and analysis of IgE and IgG4 binding epitopes.
Collapse
Affiliation(s)
- Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - Unidad de Microarray IRYCIS, Madrid, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) - Instituto de la Salud Carlos III, Madrid, Spain.
| | - Carlos Fernández-Lozano
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - Unidad de Microarray IRYCIS, Madrid, Spain
| | - Aida Vaquero-Rey
- Servicio de Alergología, Hospital Universitario Ramón y Cajal - Unidad de Microarray IRYCIS, Madrid, Spain
| | - Belén de la Hoz
- Servicio de Alergología, Hospital Universitario Ramón y Cajal - Unidad de Microarray IRYCIS, Madrid, Spain
- Red de Alergia ARADyAL (RD16/0006/0009) - Instituto de la Salud Carlos III, Madrid, Spain
| |
Collapse
|
13
|
Zhang Y, Bhardwaj SR, Vilches A, Breksa A, Lyu SC, Chinthrajah S, Nadeau KC, Jin T. IgE binding epitope mapping with TL1A tagged peptides. Mol Immunol 2023; 153:194-199. [PMID: 36527758 DOI: 10.1016/j.molimm.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/22/2022]
Abstract
Linear IgE epitopes play essential roles in persistent allergies, including peanut and tree nut allergies. Using chemically synthesized peptides attached to membranes and microarray experiments is one approach for determining predominant epitopes that has seen success. However, the overall expense of this approach and the inherent challenges in scaling up the production and purification of synthetic peptides precludes the general application of this approach. To overcome this problem, we have constructed a plasmid vector for expressing peptides sandwiched between an N-terminal His-tag and a trimeric protein. The vector was used to make overlapping peptides derived from peanut allergens Ara h 2. All the peptides were successfully expressed and purified. The resulting peptides were applied to identify IgE binding epitopes of Ara h 2 using four sera samples from individuals with known peanut allergies. New and previously defined dominant IgE binding epitopes of Ara h 2 were identified. This system may be readily applied to produce agents for component- and epitope-resolved food allergy diagnosis.
Collapse
Affiliation(s)
- Yuzhu Zhang
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Shilpa R Bhardwaj
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Ana Vilches
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Andrew Breksa
- US Department of Agriculture, Agricultural Research Service, Pacific West Area, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA
| | - Shu-Chen Lyu
- Division of Pediatric Immunology, Allergy, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, 269 Campus Dr, Stanford, CA 94305, USA
| | - Sharon Chinthrajah
- Division of Pediatric Immunology, Allergy, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, 269 Campus Dr, Stanford, CA 94305, USA
| | - Kari C Nadeau
- Division of Pediatric Immunology, Allergy, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, 269 Campus Dr, Stanford, CA 94305, USA
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027 China.
| |
Collapse
|
14
|
Chen SS, Lee D, Zhang H, Cao XH, DuPrez K. Long-term IgE immunological tolerance to peanut allergens: An alternative to Noon's daily desensitization paradigm. Cell Immunol 2022; 381:104611. [PMID: 36194940 DOI: 10.1016/j.cellimm.2022.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
Herein, we show that profound afferent long-term peanut-allergen-specific IgE immunological tolerance for 3 to 9 months induced sustained unresponsiveness (SU) in naïve or peanut-sensitized rodents after peanut allergen immunization. Rodents were vaccinated sublingually with a peanut allergen extract or recombinant peanut allergen in chenodeoxycholate (CDCA), a fanesoid X receptor (FXR, NR1H4) agonist that downregulates SREBP-1c (sterol regulatory element binding protein-1c) and upregulates SHP in bone marrow-derived tolerogenic dendritic cells (DCs). Approximately 90 ∼ 95 % of the total circulating PE-potentiated IgE and Ara h1, Ara h 2, and Ara h 6 peanut allergen-specific IgE responses were suppressed by recombinant peanut allergen-conjugated solid magnetic beads (sensitivity of 0.2 IU/ml). In contrast, peanut allergen-specific IgG production was not affected. Similarly, oleoylethanolamine (OEA), a peroxisome proliferator-activator receptor alpha (PPARα) agonist, and GW9662, a PPARγ antagonist, induced long-term peanut-specific IgE tolerance when administered via the sublingual, oral or i.p. route. Prophylactic Ara h2 DNA immunization with caNRF2 and IL-35 coexpression induced Ara h2 IgE tolerance. In summary, peanut allergen vaccination with select natural molecular ligands of nuclear receptors induced long-term peanut allergen-specific IgE tolerance via the afferent limb, which indicates that vaccination is an immune tolerance-promoting strategy that is effective at the DC level and that differs from Noon's daily desensitization program, which is effective at the mast cell level.
Collapse
Affiliation(s)
- Swey-Shen Chen
- Division of Vaccinology and Immunotherapy, IGE Therapeutics Inc., 10225 Barnes Canyon Road, Suite A106, San Diego, CA 92121, United States; Department of Immunology and Cell Biology, Institute of Genetics, 10225 Barnes Canyon Road, Suite A106, San Diego, CA 92121, United States; Department of Immunoregulation and Immunotherapy, AAIIT LLC, 12528 Kirkham Ct, STE 8, Poway, CA 92064, United States.
| | - David Lee
- Division of Vaccinology and Immunotherapy, IGE Therapeutics Inc., 10225 Barnes Canyon Road, Suite A106, San Diego, CA 92121, United States
| | - Hailan Zhang
- Division of Vaccinology and Immunotherapy, IGE Therapeutics Inc., 10225 Barnes Canyon Road, Suite A106, San Diego, CA 92121, United States; Department of Immunoregulation and Immunotherapy, AAIIT LLC, 12528 Kirkham Ct, STE 8, Poway, CA 92064, United States
| | - Xi-Hua Cao
- Division of Vaccinology and Immunotherapy, IGE Therapeutics Inc., 10225 Barnes Canyon Road, Suite A106, San Diego, CA 92121, United States
| | - Kevin DuPrez
- Division of Vaccinology and Immunotherapy, IGE Therapeutics Inc., 10225 Barnes Canyon Road, Suite A106, San Diego, CA 92121, United States
| |
Collapse
|
15
|
Qin L, Tang LF, Cheng L, Wang HY. The clinical significance of allergen-specific IgG4 in allergic diseases. Front Immunol 2022; 13:1032909. [PMID: 36389804 PMCID: PMC9648126 DOI: 10.3389/fimmu.2022.1032909] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 09/10/2023] Open
Abstract
IgG4 is a subclass of IgG antibody with a unique molecular feature of (Fragment antigen- binding) Fab-arm exchange, allowing bispecific antigen binding in a mono-valent manner. With low binding affinity to C1q and Fcγreceptors, IgG4 is incapable of forming immune complexes and activating the complement pathway, exhibiting a non-inflammatory feature. IgG4 is produced similarly to IgE and is considered a modified reaction to IgE class-switching response under certain conditions. It could also counteract IgE-activated inflammation. However, the clinical significance of IgG4 in allergic diseases is complex and controversial. Three viewpoints have been suggested to describe the role of IgG4. IgG4 can act as a tolerance-inducer to play a protective role under repeated and rapid incremental dosing of allergen exposure in allergen immunotherapy (AIT), supported by allergies in cat raisers and venom desensitization in beekeepers. Another viewpoint accepted by mainstream specialists and guidelines of Food Allergy and Management in different countries points out that food-specific IgG4 is a bystander in food allergy and should not be used as a diagnostic tool in clinical work. However, eosinophilic esophagitis (EoE) investigation revealed a direct clinical relevance between physiopathology and serum IgG4 in cow milk and wheat. These factors indicate that allergen-specific IgG4 plays a multifaceted role in allergic diseases that is protective or pathogenic depending on different allergens or exposure conditions.
Collapse
Affiliation(s)
- Lu Qin
- Department of Pulmonology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lan-Fang Tang
- Department of Pulmonology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Ying Wang
- Department of Allergy and Clinical Immunology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Suprun M, Kearney P, Hayward C, Butler H, Getts R, Sicherer SH, Turner PJ, Campbell DE, Sampson HA. Predicting probability of tolerating discrete amounts of peanut protein in allergic children using epitope-specific IgE antibody profiling. Allergy 2022; 77:3061-3069. [PMID: 35960650 DOI: 10.1111/all.15477] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND IgE-epitope profiling can accurately diagnose clinical peanut allergy. OBJECTIVE We sought to determine whether sequential (linear) epitope-specific IgE (ses-IgE) profiling can provide probabilities of tolerating discrete doses of peanut protein in allergic subjects undergoing double-blind, placebo-controlled food challenges utilizing PRACTALL dosing. METHODS Sixty four ses-IgE antibodies were quantified in blood samples using a bead-based epitope assay. A pair of ses-IgEs that predicts Cumulative Tolerated Dose (CTD) was determined using regression in 75 subjects from the discovery cohort. This epitope-based predictor was validated on 331 subjects from five independent cohorts (ages 4-25 years). Subjects were grouped based on their predicted values and probabilities of reactions at each CTD threshold were calculated. RESULTS In discovery, an algorithm using two ses-IgE antibodies was correlated with CTDs (rho = 0.61, p < .05); this correlation was 0.51 (p < .05) in validation. Using the ses-IgE-based predictor, subjects were assigned into "high," "moderate," or "low" dose-reactivity groups. On average, subjects in the "high" group were four times more likely to tolerate a specific dose, compared with the "low" group. For example, predicted probabilities of tolerating 4, 14, 44, and 144 or 444 mg in the "low" group were 92%, 77%, 53%, 29%, and 10% compared with 98%, 95%, 94%, 88%, and 73% in the "high" group. CONCLUSIONS Accurate predictions of food challenge thresholds are complex due to factors including limited responder sample sizes at each dose and variations in study-specific challenge protocols. Despite these limitations, an epitope-based predictor was able to accurately identify CTDs and may provide a useful surrogate for peanut challenges.
Collapse
Affiliation(s)
- Maria Suprun
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Scott H Sicherer
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Paul J Turner
- National Heart & Lung Institute, Imperial College London, England, UK
| | | | - Hugh A Sampson
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
17
|
Zhu H, Tang K, Chen G, Liu Z. Biomarkers in oral immunotherapy. J Zhejiang Univ Sci B 2022; 23:705-731. [PMID: 36111569 PMCID: PMC9483607 DOI: 10.1631/jzus.b2200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Food allergy (FA) is a global health problem that affects a large population, and thus effective treatment is highly desirable. Oral immunotherapy (OIT) has been showing reasonable efficacy and favorable safety in most FA subjects. Dependable biomarkers are needed for treatment assessment and outcome prediction during OIT. Several immunological indicators have been used as biomarkers in OIT, such as skin prick tests, basophil and mast cell reactivity, T cell and B cell responses, allergen-specific antibody levels, and cytokines. Other novel indicators also could be potential biomarkers. In this review, we discuss and assess the application of various immunological indicators as biomarkers for OIT.
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Kaifa Tang
- Department of Urology, the Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Guoqiang Chen
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital, Xi'an 710061, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China.
| |
Collapse
|
18
|
Lentil allergens identification and quantification: An update from omics perspective. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 4:100109. [PMID: 35495776 PMCID: PMC9043643 DOI: 10.1016/j.fochms.2022.100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023]
|
19
|
O'Rourke E, Tang H, Chin A, Long A, Sindher S, Chinthrajah RS. Current insights: a systemic review of therapeutic options for peanut allergy. Curr Opin Allergy Clin Immunol 2022; 22:188-193. [PMID: 35660711 PMCID: PMC9178908 DOI: 10.1097/aci.0000000000000824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW With increasing prevalence of peanut allergy (PA) globally and the greater risk of potential reactions occurring due to the leading role of nuts in food products, PA has become a significant public health concern over the past decade, affecting up to 5 million of the US adult population. This review details updates and advances in prevalence, diagnosis, and immunotherapies that have occurred over the past year. RECENT FINDINGS Therapeutic and diagnostic advances remain at the forefront of research and have continued to push the food allergy (FA) field forward to provide a promising role in the detection and treatment of PA. The FA field has researched significant advances in peanut immunotherapy, biomarker diagnosis, and quality of life (QoL) improvement. SUMMARY Given the burden and consequences for individuals with PA, these advances delivered in clinical practice can significantly improve the QoL of individuals with PA and their caregivers. Ongoing studies will continue to investigate long-term outcome measures of desensitisation and effective management plans tailored to the families' needs.
Collapse
Affiliation(s)
- Eimear O'Rourke
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
20
|
Thörnqvist L, Sjöberg R, Greiff L, van Hage M, Ohlin M. Linear Epitope Binding Patterns of Grass Pollen-Specific Antibodies in Allergy and in Response to Allergen-Specific Immunotherapy. FRONTIERS IN ALLERGY 2022; 3:859126. [PMID: 35769580 PMCID: PMC9234942 DOI: 10.3389/falgy.2022.859126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic diseases affect many individuals world-wide and are dependent on the interaction between allergens and antibodies of the IgE isotype. Allergen-specific immunotherapy (AIT) can alter the development of the disease, e.g., through induction of allergen-specific IgG that block allergen-IgE interactions. The knowledge of epitopes recognized by allergy-causing and protective antibodies are limited. Therefore, we developed an allergome-wide peptide microarray, aiming to track linear epitope binding patterns in allergic diseases and during AIT. Here, we focused on immune responses to grass pollen allergens and found that such epitopes were commonly recognized before initiation of AIT and that AIT commonly resulted in increased antibody production against additional epitopes already after 1 year of treatment. The linear epitope binding patterns were highly individual, both for subjects subjected to and for individuals not subjected to AIT. Still, antibodies against some linear epitopes were commonly developed during AIT. For example, the two rigid domains found in grass pollen group 5 allergens have previously been associated to a diversity of discontinuous epitopes. Here, we present evidence that also the flexible linker, connecting these domains, contains regions of linear epitopes against which antibodies are developed during AIT. We also describe some commonly recognized linear epitopes on Phl p 2 and suggest how antibodies against these epitopes may contribute to or prevent allergy in relation to a well-defined stereotyped/public IgE response against the same allergen. Finally, we identify epitopes that induce cross-reactive antibodies, but also antibodies that exclusively bind one of two highly similar variants of a linear epitope. Our findings highlight the complexity of antibody recognition of linear epitopes, with respect to both the studied individuals and the examined allergens. We expect that many of the findings in this study can be generalized also to discontinuous epitopes and that allergen peptide microarrays provide an important tool for enhancing the understanding of allergen-specific antibodies in allergic disease and during AIT.
Collapse
Affiliation(s)
| | - Ronald Sjöberg
- Autoimmunity and Serology Profiling, Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Lennart Greiff
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
- *Correspondence: Mats Ohlin
| |
Collapse
|
21
|
Suárez‐Fariñas M, Suprun M, Kearney P, Getts R, Grishina G, Hayward C, Luta D, Porter A, Witmer M, du Toit G, Lack G, Chinthrajah RS, Galli SJ, Nadeau K, Sampson HA. Accurate and reproducible diagnosis of peanut allergy using epitope mapping. Allergy 2021; 76:3789-3797. [PMID: 33991353 PMCID: PMC8607840 DOI: 10.1111/all.14905] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Accurate diagnosis of peanut allergy is a significant clinical challenge. Here, a novel diagnostic blood test using the peanut bead-based epitope assay ("peanut BBEA") was developed utilizing the LEAP cohort and then validated using two independent cohorts. METHODS The development of the peanut BBEA diagnostic test followed the National Academy of Medicine's established guidelines with discovery performed on 133 subjects from the non-interventional arm of the LEAP trial and an independent validation performed on 82 subjects from the CoFAR2 and 84 subjects from the POISED study. All samples were analyzed using the peanut BBEA methodology, which measures levels of IgE to two Ara h 2 sequential (linear) epitopes and compares their combination to a threshold pre-specified in the model development phase. When a patient has an inconclusive outcome by skin prick testing (or sIgE), IgE antibody levels to this combination of two epitopes can distinguish whether the patient is "Allergic" or "Not Allergic." Diagnoses of peanut allergy in all subjects were confirmed by double-blind placebo-controlled food challenge and subjects' ages were 7-55 years. RESULTS In the validation using CoFAR2 and POISED cohorts, the peanut BBEA diagnostic test correctly diagnosed 93% of the subjects, with a sensitivity of 92%, specificity of 94%, a positive predictive value of 91%, and negative predictive value of 95%. CONCLUSIONS In validation of the peanut BBEA diagnostic test, the overall accuracy was found to be superior to existing diagnostic tests for peanut allergy including skin prick testing, peanut sIgE, and peanut component sIgE testing.
Collapse
Affiliation(s)
- Mayte Suárez‐Fariñas
- Department of Population Health Science and Policy and Department of Genetics and GenomicsIcahn School of MedicineNew YorkNYUSA
| | - Maria Suprun
- Department of Pediatrics, Allergy and ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Paul Kearney
- AllerGenis LLCHatfieldPAUSA
- Data Incites LLCSeattleWAUSA
| | | | - Galina Grishina
- Department of Pediatrics, Allergy and ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | | | | | | | | | | | | | | | - Stephen J. Galli
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
- Departments of Pathology and Microbiology & ImmunologyStanford UniversityStanfordCAUSA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma ResearchStanford UniversityStanfordCAUSA
| | - Hugh A. Sampson
- Department of Pediatrics, Allergy and ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
22
|
Chen G, Shrock EL, Li MZ, Spergel JM, Nadeau KC, Pongracic JA, Umetsu DT, Rachid R, MacGinnitie AJ, Phipatanakul W, Schneider L, Oettgen HC, Elledge SJ. High-resolution epitope mapping by AllerScan reveals relationships between IgE and IgG repertoires during peanut oral immunotherapy. CELL REPORTS MEDICINE 2021; 2:100410. [PMID: 34755130 PMCID: PMC8563412 DOI: 10.1016/j.xcrm.2021.100410] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/18/2021] [Accepted: 09/21/2021] [Indexed: 10/24/2022]
Abstract
Peanut allergy can result in life-threatening reactions and is a major public health concern. Oral immunotherapy (OIT) induces desensitization to food allergens through administration of increasing amounts of allergen. To dissect peanut-specific immunoglobulin E (IgE) and IgG responses in subjects undergoing OIT, we have developed AllerScan, a method that leverages phage-display and next-generation sequencing to identify the epitope targets of peanut-specific antibodies. We observe a striking diversification and boosting of the peanut-specific IgG repertoire after OIT and a reduction in pre-existing IgE levels against individual epitopes. High-resolution epitope mapping reveals shared recognition of public epitopes in Ara h 1, 2, 3, and 7. In individual subjects, OIT-induced IgG specificities overlap extensively with IgE and exhibit strikingly similar antibody footprints, suggesting related clonal lineages or convergent evolution of peanut-specific IgE and IgG B cells. Individual differences in epitope recognition identified via AllerScan could inform safer and more effective personalized immunotherapy.
Collapse
Affiliation(s)
- Genghao Chen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02115, USA
| | - Ellen L Shrock
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA.,Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02115, USA
| | - Mamie Z Li
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan M Spergel
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine of University of Pennsylvania, Philadelphia, PA, USA
| | - Kari C Nadeau
- Department of Medicine, Sean N Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Jacqueline A Pongracic
- Division of Pediatric Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Dale T Umetsu
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Rima Rachid
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew J MacGinnitie
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wanda Phipatanakul
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Lynda Schneider
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hans C Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.,Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
23
|
McKendry RT, Kwok M, Hemmings O, James LK, Santos AF. Allergen-specific IgG show distinct patterns in persistent and transient food allergy. Pediatr Allergy Immunol 2021; 32:1508-1518. [PMID: 34057765 DOI: 10.1111/pai.13567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immediate food-allergic reactions are IgE-mediated, but many individuals with detectable allergen-specific IgE do not react to the food. Allergen-specific IgG may interfere with allergen-IgE interaction and/or through intracellular inhibitory signalling to suppress mast cell and basophil response to food allergens. We aimed to understand the role of allergen-specific IgG in food allergy and natural tolerance. METHODS IgG and IgG isotypes specific to peanut, cow's milk and egg were measured using ImmunoCAP and ELISA respectively in samples of children with suspected food allergies. Expression of IgE and IgG and their receptors and expression of activation markers following allergen stimulation were measured on basophils and mast cells by flow cytometry, with and without blockade of FcγRIIα or FcγRIIβ receptors. RESULTS The levels of peanut-specific IgG, IgG1, IgG2, IgG3 and IgG4 in ELISA were higher in peanut-allergic than in non-peanut-allergic children. No difference in allergen-specific IgG isotypes was observed between allergic and non-allergic children to milk or egg, except for milk-specific IgG4 that was higher in non-cow's milk-allergic than in cow's milk-allergic children. Basophils and LAD2 cells expressed IgG receptors, but IgG and IgA were not detected on the surface of either cell type and blocking FcγRIIα or FcγRIIβ did not modify basophil or mast cell activation in response to allergen in allergic or tolerant children. CONCLUSION Allergen-specific IgG patterns were distinct in persistent (peanut) versus transient (milk and egg) food allergies. We found no evidence that FcγRIIα or FcγRIIβ receptors affect allergen-induced activation of mast cells and basophils in food allergy or natural tolerance.
Collapse
Affiliation(s)
- Richard T McKendry
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Matthew Kwok
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Oliver Hemmings
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Louisa K James
- Blizard Institute, Queen Mary University of London, London, UK
| | - Alexandra F Santos
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Children's Allergy Service, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
24
|
Bringing the Next Generation of Food Allergy Diagnostics into the Clinic. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 10:1-9. [PMID: 34530176 DOI: 10.1016/j.jaip.2021.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023]
Abstract
Food allergy diagnosis has a massive impact on the lives of patients and their families. Despite recent developments with specific IgE to component allergens, a significant proportion of patients assessed for possible food allergy require oral food challenge to ensure an accurate diagnosis. More precise diagnostic methods are required to reduce the need for oral food challenges. Bead-based epitope assays and cellular tests, such as basophil activation and mast cell tests are the most novel and promising tests on the horizon. There is a pathway to pursue to enable their incorporation in clinical practice, including standardization, technical validation, clinical validation, external validation, overcoming practical and logistical issues, and regulatory approval. Valuable clinical application of these tests goes beyond diagnosis and includes risk assessment to identify allergic patients who are most sensitive and at risk for severe allergic reactions, and to define prognosis and assess clinical response to immunomodulatory treatments.
Collapse
|
25
|
Suarez-Farinas M, Suprun M, Bahnson HT, Raghunathan R, Getts R, duToit G, Lack G, Sampson HA. Evolution of epitope-specific IgE and IgG 4 antibodies in children enrolled in the LEAP trial. J Allergy Clin Immunol 2021; 148:835-842. [PMID: 33592205 PMCID: PMC8480440 DOI: 10.1016/j.jaci.2021.01.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 01/15/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND In the LEAP (Learning Early About Peanut Allergy) trial, early consumption of peanut in high-risk infants was found to decrease the rate of peanut allergy at 5 years of age. Sequential epitope-specific (ses-)IgE is a promising biomarker of clinical peanut reactivity. OBJECTIVE We sought to compare the evolution of ses-IgE and ses-IgG4 in children who developed (or not) peanut allergy and to evaluate the immunomodulatory effects of early peanut consumption on these antibodies. METHODS Sera from 341 children (LEAP cohort) were assayed at baseline, 1, 2.5, and 5 years of age, with allergy status determined by oral food challenge at 5 years. A bead-based epitope assay was used to quantitate ses-IgE and ses-IgG4 to 64 sequential epitopes from Ara h 1 to Ara h 3 and was analyzed using linear mixed-effect models. RESULTS In children avoiding peanut who became peanut allergic, the bulk of peanut ses-IgE did not develop until after 2.5 years. Minimal increases of ses-IgE occurred after 1 year in consumers, but not to the same epitopes as those in children developing peanut allergy. No major changes in ses-IgE were seen in nonallergic or sensitized children. IgE in sensitized consumers was detected against peanut proteins. ses-IgG4 increased over time in most children regardless of consumption or allergy status. CONCLUSIONS Early peanut consumption in infants at high risk of developing peanut allergy appears to divert the immunologic response to a presumably "protective" effect. In general, consumers tend to generate ses-IgG4 earlier and in greater quantities than nonconsumers do, whereas only avoiders tend to generate significant quantities of ses-IgE.
Collapse
Affiliation(s)
- Mayte Suarez-Farinas
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Maria Suprun
- Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Henry T Bahnson
- Benaroya Research Institute and the Immune Tolerance Network, Seattle, Wash
| | - Rohit Raghunathan
- Center for Biostatistics, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - George duToit
- Department of Pediatrics, St Thomas Hospital and King's College London, London, United Kingdom
| | - Gideon Lack
- Department of Pediatrics, St Thomas Hospital and King's College London, London, United Kingdom
| | - Hugh A Sampson
- Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
26
|
Apostolovic D, Marsh JT, Baumert J, Taylor SL, Westphal A, de Jongh H, Johnson P, de Jong GAH, Koppelman SJ. Purification and Initial Characterization of Ara h 7, a Peanut Allergen from the 2S Albumin Protein Family. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6318-6329. [PMID: 34037388 DOI: 10.1021/acs.jafc.1c00618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
2S albumins are important peanut allergens. Within this protein family, Ara h 2 and Ara h 6 have been described in detail, but Ara h 7 has received little attention. We now describe the first purification of Ara h 7 and its characterization. Two Ara h 7 isoforms were purified from peanuts. Mass spectrometry revealed that both the isoforms have a post-translation cleavage, a hydroxyproline modification near the N-terminus, and four disulfide bonds. The secondary structure of both Ara h 7 isoforms is highly comparable to those of Ara h 2 and Ara h 6. Both Ara h 7 isoforms bind IgE, and Ara h 7 is capable of inhibiting the binding between Ara h 2 and IgE, suggesting at least partially cross-reactive IgE epitopes. Ara h 7 was found in all main market types of peanut, at comparable levels. This suggests that Ara h 7 is a relevant allergen from the peanut 2S albumin protein family.
Collapse
Affiliation(s)
- Danijela Apostolovic
- Immunology and Allergy Division, Department of Medicine Solna, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Justin T Marsh
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Joe Baumert
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Steve L Taylor
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Adrie Westphal
- Biochemistry Dept., Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Harmen de Jongh
- ProtinConsult, Rozenstraat 19, 3702 VL Zeist, The Netherlands
| | - Phil Johnson
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Govardus A H de Jong
- Wageningen University and Research, Food and Biobased Research. PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Stef J Koppelman
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| |
Collapse
|
27
|
Mayorga C, Palomares F, Cañas JA, Pérez-Sánchez N, Núñez R, Torres MJ, Gómez F. New Insights in Therapy for Food Allergy. Foods 2021; 10:foods10051037. [PMID: 34068667 PMCID: PMC8151532 DOI: 10.3390/foods10051037] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022] Open
Abstract
Food allergy is an increasing problem worldwide, with strict avoidance being classically the only available reliable treatment. The main objective of this review is to cover the latest information about the tools available for the diagnosis and treatment of food allergies. In recent years, many efforts have been made to better understand the humoral and cellular mechanisms involved in food allergy and to improve the strategies for diagnosis and treatment. This review illustrates IgE-mediated food hypersensitivity and provides a current description of the diagnostic strategies and advances in different treatments. Specific immunotherapy, including different routes of administration and new therapeutic approaches, such as hypoallergens and nanoparticles, are discussed in detail. Other treatments, such as biologics and microbiota, are also described. Therefore, we conclude that although important efforts have been made in improving therapies for food allergies, including innovative approaches mainly focusing on efficacy and safety, there is an urgent need to develop a set of basic and clinical results to help in the diagnosis and treatment of food allergies.
Collapse
Affiliation(s)
- Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
- Correspondence: ; Tel.: +34-951-290-224
| | - Francisca Palomares
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - José A. Cañas
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - Natalia Pérez-Sánchez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
| | - Rafael Núñez
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga (IBIMA), 29009 Málaga, Spain; (F.P.); (J.A.C.); (R.N.)
| | - María José Torres
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
- Medicine Department, Universidad de Málaga-UMA, 29071 Málaga, Spain
| | - Francisca Gómez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, 29071 Málaga, Spain; (N.P.-S.); (M.J.T.); (F.G.)
| |
Collapse
|
28
|
Dreskin SC, Koppelman SJ, Andorf S, Nadeau KC, Kalra A, Braun W, Negi SS, Chen X, Schein CH. The importance of the 2S albumins for allergenicity and cross-reactivity of peanuts, tree nuts, and sesame seeds. J Allergy Clin Immunol 2021; 147:1154-1163. [PMID: 33217410 PMCID: PMC8035160 DOI: 10.1016/j.jaci.2020.11.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022]
Abstract
Allergies to peanuts, tree nuts, and sesame seeds are among the most important food-related causes of anaphylaxis. Important clinical questions include: Why is there a variable occurrence of coallergy among these foods and Is this immunologically mediated? The clinical and immunologic data summarized here suggest an immunologic basis for these coallergies that is based on similarities among the 2S albumins. Data from component resolved diagnostics have highlighted the relationship between IgE binding to these allergens and the presence of IgE-mediated food allergy. Furthermore, in vitro and in vivo experiments provide strong evidence that the 2S albumins are the most important allergens in peanuts for inducing an allergic effector response. Although the 2S albumins are diverse, they have a common disulfide-linked core with similar physicochemical properties that make them prime candidates to explain much of the observed coallergy among peanuts, tree nuts, and sesame seeds. The well-established frequency of cashew and pistachio nut coallergy (64%-100%) highlights how the structural similarities among their 2S albumins may account for observed clinical cross-reactivity. A complete understanding of the physicochemical properties of the 2S albumins in peanuts, tree nuts, and sesame seeds will enhance our ability to diagnose, treat, and ultimately prevent these allergies.
Collapse
Affiliation(s)
- Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, Colo.
| | - Stef J Koppelman
- Food Allergy Research and Resource Program, Department of Food Science and Technology, University of Nebraska, Lincoln, Neb
| | - Sandra Andorf
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, Calif
| | - Anjeli Kalra
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Werner Braun
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Tex; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| | - Surendra S Negi
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Tex; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex
| | - Xueni Chen
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Catherine H Schein
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Tex; Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Tex.
| |
Collapse
|
29
|
Asymmetrizing an icosahedral virus capsid by hierarchical assembly of subunits with designed asymmetry. Nat Commun 2021; 12:589. [PMID: 33500404 PMCID: PMC7838286 DOI: 10.1038/s41467-020-20862-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/07/2020] [Indexed: 11/08/2022] Open
Abstract
Symmetrical protein complexes are ubiquitous in biology. Many have been re-engineered for chemical and medical applications. Viral capsids and their assembly are frequent platforms for these investigations. A means to create asymmetric capsids may expand applications. Here, starting with homodimeric Hepatitis B Virus capsid protein, we develop a heterodimer, design a hierarchical assembly pathway, and produce asymmetric capsids. In the heterodimer, the two halves have different growth potentials and assemble into hexamers. These preformed hexamers can nucleate co-assembly with other dimers, leading to Janus-like capsids with a small discrete hexamer patch. We can remove the patch specifically and observe asymmetric holey capsids by cryo-EM reconstruction. The resulting hole in the surface can be refilled with fluorescently labeled dimers to regenerate an intact capsid. In this study, we show how an asymmetric subunit can be used to generate an asymmetric particle, creating the potential for a capsid with different surface chemistries.
Collapse
|
30
|
Martínez-Botas J, Fernández-Lozano C, Rodríguez-Alonso A, Sánchez-Ruano L, de la Hoz B. Epitope Mapping of Food Allergens Using Noncontact Piezoelectric Microarray Printer. Methods Mol Biol 2021; 2344:119-135. [PMID: 34115356 DOI: 10.1007/978-1-0716-1562-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peptide microarrays have been used to study protein-protein interaction, enzyme-substrate profiling, epitope mapping, vaccine development, and immuno-profiling. Unlike proteins, peptides are cheap to produce, and can be produced in a high-throughput manner, in a reliable and consistent procedure that reduces batch-to-batch variability. All this provides the peptide microarrays a great potential in the development of new diagnostic tools. Noncontact printing, such as piezoelectric systems, results in a considerable advance in protein and peptide microarray production. In particular, they improve drop deposition, sample distribution, quality control, and flexibility in substrate deposition and eliminate cross-contamination and carryover. These features contribute to creating reproducible assays and generating more reliable data. Here we describe the methods and materials for epitope mapping of food allergens using peptide microarrays produced with a noncontact piezoelectric microarray printer.
Collapse
Affiliation(s)
- Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carlos Fernández-Lozano
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| | - Alberto Rodríguez-Alonso
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| | - Laura Sánchez-Ruano
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| | - Belén de la Hoz
- Servicio de Alergología, Hospital Universitario Ramón y Cajal - IRYCIS, Madrid, Spain
| |
Collapse
|
31
|
Ding J, Ju H, Zhong L, Qi L, Sun N, Lin S. Reducing the allergenicity of pea protein based on the enzyme action of alcalase. Food Funct 2021; 12:5940-5948. [PMID: 34031673 DOI: 10.1039/d1fo00083g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic hydrolysis could be one of the crucial means to limit the allergenicity of allergens. The allergenicity of pea peptides was evaluated using indirect ELISA and RBL-2H3 cell assay, thereby obtaining hypoallergenic pea peptide sequences. Results indicated that pea protein-sensitized mice produced higher levels of total IgG1 and IgE antibodies than the mice in the control group (P < 0.05). Moreover, the allergenicity of hydrolysates decreased significantly after enzymolysis, and the allergenicity of ultrafiltration component F1 and purified component F1-2 was significantly lower than that of other isolated and purified components (P < 0.05). Furthermore, ADLYNPR identified from F1-2 had lower binding capacity to specific IgE and IgG1 and lower degree of cell degranulation with a higher EC50 value of 6.63 ng mL-1, which was about 36.83 times that of pea protein (P < 0.05). Based on the above results, ADLYNPR might be a potential source of hypoallergenic peptides.
Collapse
Affiliation(s)
- Jie Ding
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Huapeng Ju
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Limin Zhong
- Ganzhou Quanbiao Biological Technology Co., Ltd, Ganzhou 341100, P.R. China
| | - Libo Qi
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P.R. China.
| |
Collapse
|
32
|
Suprun M, Sicherer SH, Wood RA, Jones SM, Leung DYM, Henning AK, Dawson P, Burks AW, Lindblad R, Getts R, Suárez-Fariñas M, Sampson HA. Early epitope-specific IgE antibodies are predictive of childhood peanut allergy. J Allergy Clin Immunol 2020; 146:1080-1088. [PMID: 32795587 PMCID: PMC8095129 DOI: 10.1016/j.jaci.2020.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peanut allergy is characterized by the development of IgE against peanut antigen. OBJECTIVE We sought to evaluate the evolution of epitope-specific (es)IgE and esIgG4 in a prospective cohort of high-risk infants to determine whether antibody profiles can predict peanut allergy after age 4 years. METHODS The end point was allergy status at age 4+ years; samples from 293 children were collected at age 3 to 15 months and 2 to 3 and 4+ years. Levels of specific (s)IgE and sIgG4 to peanut and component proteins, and 50 esIgE and esIgG4 were quantified. Changes were analyzed with mixed-effects models. Machine learning algorithms were developed to identify a combination of antigen- and epitope-specific antibodies that using 3- to 15-month or 2- to 3-year samples can predict allergy status at age 4+ years. RESULTS At age 4+ years, 38% of children were Tolerant or 14% had Possible, 8% Convincing, 24% Serologic, and 16% Confirmed allergy. At age 3 to 15 months, esIgE profiles were similar among groups, whereas marked increases were evident at age 2 and 4+ years only in Confirmed and Serologic groups. In contrast, peanut sIgE level was significantly lower in the Tolerant group at age 3 to 15 months, increased in Confirmed and Serologic groups but decreased in Convincing and Possibly Allergic groups over time. An algorithm combining esIgEs with peanut sIgE outperformed different clinically relevant IgE cutoffs, predicting allergy status on an "unseen" set of patients with area under the curves of 0.84 at age 3 to 15 months and 0.87 at age 2 to 3 years. CONCLUSIONS Early epitope-specific plus peanut-specific IgE is predictive of allergy status at age 4+ years.
Collapse
Affiliation(s)
- Maria Suprun
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Robert A Wood
- Johns Hopkins University School of Medicine, Baltimore, Md
| | - Stacie M Jones
- University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Suprun M, Getts R, Grishina G, Tsuang A, Suárez‐Fariñas M, Sampson HA. Ovomucoid epitope-specific repertoire of IgE, IgG 4 , IgG 1 , IgA 1 , and IgD antibodies in egg-allergic children. Allergy 2020; 75:2633-2643. [PMID: 32391917 DOI: 10.1111/all.14357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Egg-white ovomucoid, that is, Gal d 1, is associated with IgE-mediated allergic reactions in most egg-allergic children. Epitope-specific IgE levels have been correlated with the severity of egg allergy, while emerging evidence suggests that other antibody isotypes (IgG1 , IgG4 , IgA, and IgD) may have a protective function; yet, their epitope-specific repertoires and associations with atopic comorbidities have not been studied. METHODS Bead-based epitope assay (BBEA) was used to quantitate the levels of epitope-specific (es)IgA, esIgE, esIgD, esIgG1 , and esIgG4 antibodies directed at 58 (15-mer) overlapping peptides, covering the entire sequence of ovomucoid, in plasma of 38 egg-allergic and 6 atopic children. Intraclass correlation (ICC) and coefficient of variation (CV) were used for the reliability assessment. The relationships across esIgs were evaluated using network analysis; linear and logistic regressions were used to compare groups based on egg allergy status and comorbidities. RESULTS BBEA had high reliability (ICC >0.75) and low variability (CV <20%) and could detect known IgE-binding epitopes. Egg-allergic children had lower esIgA1 (P = .010) and esIgG1 (P = .016) and higher esIgE (P < .001) and esIgD (P = .015) levels compared to the atopic controls. Interestingly, within the allergic group, children with higher esIgD had decreased odds of anaphylactic reactions (OR =0.48, P = .038). Network analysis identified most associations between esIgE with either esIgG4 or esIgD; indicating that IgE-secreting plasma cells could originate from either sequential isotype switch from antigen-experienced intermediate isotypes or directly from the IgD+ B cells. CONCLUSIONS Collectively, these data point toward a contribution of epitope-specific antibody repertoires to the pathogenesis of egg allergy.
Collapse
Affiliation(s)
- Maria Suprun
- Icahn School of Medicine at Mount Sinai New Yok NY USA
| | | | | | - Angela Tsuang
- Icahn School of Medicine at Mount Sinai New Yok NY USA
| | | | | |
Collapse
|
34
|
Krause T, Röckendorf N, Meckelein B, Sinnecker H, Schwager C, Möckel S, Jappe U, Frey A. IgE Epitope Profiling for Allergy Diagnosis and Therapy - Parallel Analysis of a Multitude of Potential Linear Epitopes Using a High Throughput Screening Platform. Front Immunol 2020; 11:565243. [PMID: 33117349 PMCID: PMC7561404 DOI: 10.3389/fimmu.2020.565243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/08/2020] [Indexed: 12/22/2022] Open
Abstract
Immunoglobulin E (IgE) is pivotal for manifestation and persistence of most immediate-type allergies and some asthma phenotypes. Consequently, IgE represents a crucial target for both, diagnostic purposes as well as therapeutic approaches. In fact, allergen-specific immunotherapy – aiming to re-route an IgE-based inflammatory response into an innocuous immune reaction against the allergen – is the only curative approach for IgE-mediated allergic diseases known so far. However, this requires the cognate allergen to be known. Unfortunately, even in well-characterized allergics or asthmatics, often just a small fraction of total IgE can be assigned to specific target allergens. To overcome this knowledge gap, we have devised an analytical platform for unbiased IgE target epitope detection. The system relies on chemically produced random peptide libraries immobilized on polystyrene beads (“one-bead-one-compound (OBOC) libraries”) capable to present millions of different peptide motifs simultaneously to immunoglobulins from biological samples. Beads binding IgE are highlighted with a fluorophore-labeled anti-IgE antibody allowing fluorescence-based detection and isolation of positives, which then can be characterized by peptide sequencing. Setting-up this platform required an elaborate optimization process including proper choice of background suppressants, secondary antibody and fluorophore label as well as incubation conditions. For optimal performance our procedure involves a sophisticated pre-adsorption step to eliminate beads that react nonspecifically with anti-IgE secondary antibodies. This step turned out to be important for minimizing detection of “false positive” motifs that otherwise would erroneously be classified as IgE epitopes. In validation studies we were able to retrieve artificial test-peptide beads spiked into our library by using IgE directed against those test-peptides at physiological concentrations (≤20 IU/ml of specific IgE), and disease-relevant bead-bound epitopes of the major peanut allergen Ara h 2 by screening with sera from peanut allergics. Thus, we established a platform with which one can find and validate new immunoglobulin targets using patient material which displays a largely unknown immunoglobulin repertoire.
Collapse
Affiliation(s)
- Thorsten Krause
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Niels Röckendorf
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Barbara Meckelein
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Heike Sinnecker
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Christian Schwager
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Clinical Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
| | - Stefanie Möckel
- Flow Cytometry Core Facility, Institute of Molecular Biology, Mainz, Germany
| | - Uta Jappe
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Clinical Molecular Allergology, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Lübeck, Lübeck, Germany
| | - Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Priority Area Asthma and Allergy, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| |
Collapse
|
35
|
Santos AF, Barbosa‐Morais NL, Hurlburt BK, Ramaswamy S, Hemmings O, Kwok M, O’Rourke C, Bahnson HT, Cheng H, James L, Gould HJ, Sutton BJ, Maleki SJ, Lack G. IgE to epitopes of Ara h 2 enhance the diagnostic accuracy of Ara h 2-specific IgE. Allergy 2020; 75:2309-2318. [PMID: 32248566 DOI: 10.1111/all.14301] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Understanding the discrepancy between IgE sensitization and allergic reactions to peanut could facilitate diagnosis and lead to novel means of treating peanut allergy. OBJECTIVE To identify differences in IgE and IgG4 binding to peanut peptides between peanut-allergic (PA) and peanut-sensitized but tolerant (PS) children. METHODS PA (n = 56), PS (n = 42) and nonsensitized nonallergic (NA, n = 10) patients were studied. Synthetic overlapping 15-mer peptides of peanut allergens (Ara h 1-11) were spotted onto microarray slides, and patients' samples were tested for IgE and IgG4 binding using immunofluorescence. IgE and IgG4 levels to selected peptides were quantified using ImmunoCAP. Diagnostic model comparisons were performed using likelihood-ratio tests between each specified nominal logistic regression models. RESULTS Seven peptides on Ara h 1, Ara h 2, and Ara h 3 were bound more by IgE of PA compared to PS patients on the microarray. IgE binding to one peptide on Ara h 5 and IgG4 binding to one Ara h 9 peptide were greater in PS than in PA patients. Using ImmunoCAP, IgE to the Ara h 2 peptides enhanced the diagnostic accuracy of Ara h 2-specific IgE. Ratios of IgG4/IgE to 4 out of the 7 peptides were higher in PS than in PA subjects. CONCLUSIONS Ara h 2 peptide-specific IgE added diagnostic value to Ara h 2-specific IgE. Ability of peptide-specific IgG4 to surmount their IgE counterpart seems to be important in established peanut tolerance.
Collapse
Affiliation(s)
- Alexandra F. Santos
- Department of Women and Children’s Health (Paediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine King’s College London London UK
- Children’s Allergy ServiceEvelina London Children's Hospital, Guy’s and St Thomas’ Hospital London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Nuno L. Barbosa‐Morais
- Faculdade de Medicina Instituto de Medicina Molecular João Lobo Antunes Universidade de Lisboa Lisbon Portugal
| | - Barry K. Hurlburt
- US Department of Agriculture Southern Regional Research Center New Orleans LA USA
| | - Sneha Ramaswamy
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Randall Centre for Cell & Molecular Biophysics King’s College London London UK
| | - Oliver Hemmings
- Department of Women and Children’s Health (Paediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine King’s College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | - Matthew Kwok
- Department of Women and Children’s Health (Paediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine King’s College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| | | | | | - Hsiaopo Cheng
- US Department of Agriculture Southern Regional Research Center New Orleans LA USA
| | - Louisa James
- Blizard Institute Queen Mary University of London London UK
| | - Hannah J. Gould
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Randall Centre for Cell & Molecular Biophysics King’s College London London UK
| | - Brian J. Sutton
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Randall Centre for Cell & Molecular Biophysics King’s College London London UK
| | - Soheila J. Maleki
- US Department of Agriculture Southern Regional Research Center New Orleans LA USA
| | - Gideon Lack
- Department of Women and Children’s Health (Paediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King’s College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine King’s College London London UK
- Children’s Allergy ServiceEvelina London Children's Hospital, Guy’s and St Thomas’ Hospital London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
| |
Collapse
|
36
|
Mikus M, Zandian A, Sjöberg R, Hamsten C, Forsström B, Andersson M, Greiff L, Uhlén M, Levin M, Nilsson P, van Hage M, Ohlin M. Allergome-wide peptide microarrays enable epitope deconvolution in allergen-specific immunotherapy. J Allergy Clin Immunol 2020; 147:1077-1086. [PMID: 32791163 DOI: 10.1016/j.jaci.2020.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/22/2020] [Accepted: 08/04/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The interaction of allergens and allergen-specific IgE initiates the allergic cascade after crosslinking of receptors on effector cells. Antibodies of other isotypes may modulate such a reaction. Receptor crosslinking requires binding of antibodies to multiple epitopes on the allergen. Limited information is available on the complexity of the epitope structure of most allergens. OBJECTIVES We sought to allow description of the complexity of IgE, IgG4, and IgG epitope recognition at a global, allergome-wide level during allergen-specific immunotherapy (AIT). METHODS We generated an allergome-wide microarray comprising 731 allergens in the form of more than 172,000 overlapping 16-mer peptides. Allergen recognition by IgE, IgG4, and IgG was examined in serum samples collected from subjects undergoing AIT against pollen allergy. RESULTS Extensive induction of linear peptide-specific Phl p 1- and Bet v 1-specific humoral immunity was demonstrated in subjects undergoing a 3-year-long AIT against grass and birch pollen allergy, respectively. Epitope profiles differed between subjects but were largely established already after 1 year of AIT, suggesting that dominant allergen-specific antibody clones remained as important contributors to humoral immunity following their initial establishment during the early phase of AIT. Complex, subject-specific patterns of allergen isoform and group cross-reactivities in the repertoires were observed, patterns that may indicate different levels of protection against different allergen sources. CONCLUSIONS The study highlights the complexity and subject-specific nature of allergen epitopes recognized following AIT. We envisage that epitope deconvolution will be an important aspect of future efforts to describe and analyze the outcomes of AIT in a personalized manner.
Collapse
Affiliation(s)
- Maria Mikus
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden; Unit of Experimental Asthma and Allergy Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arash Zandian
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Ronald Sjöberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Carl Hamsten
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Björn Forsström
- Division of Systems Biology, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Morgan Andersson
- Department of Otorhinolaryngology, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Lennart Greiff
- Department of Otorhinolaryngology, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden; Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mathias Uhlén
- Division of Systems Biology, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Mattias Levin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology & SciLifeLab, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden.
| |
Collapse
|
37
|
Pahlow Mose A, Mortz E, Stahl Skov P, Mortz CG, Eller E, Sprogøe U, Barington T, Bindslev‐Jensen C. The quest for ingested peanut protein in human serum. Allergy 2020; 75:1721-1729. [PMID: 31715004 DOI: 10.1111/all.14109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/15/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND There is mounting evidence that systemic uptake of food allergens is key to triggering anaphylaxis. However, direct proof for this theory is still lacking. The purpose of this study was to quantify the absorption and to determine the absorption kinetics of immunoreactive peanut protein in relation to the allergic response in human. METHODS Quantitative protein assays including mass spectrometry, dot blots and Western blotting were developed to determine the level of Ara h 2 absorption in human serum. The double monoclonal sandwich ELISA was applied to quantify absorbed Ara h 2 and 6, and the basophil histamine release assay and the human passive cutaneous anaphylaxis test were utilized to study the absorption kinetics of immunologically intact peanut proteins. RESULTS The protein assays worked but were not sensitive enough to trace the minute amounts of absorbed Ara h 2 in human serum. The level of Ara h 6 in serum was found to be up to 0.2 ng/mL, but Ara h 2 could not be detected with the ELISA. Both the in vivo and the in vitro methods were successful in demonstrating that: immunoreactive peanut protein was absorbed shortly after ingestion (≤5 minutes); the peanut protein concentration peaks between 1 and 4 hours; and peanut proteins can circulate for at least 48 hours in the bloodstream. CONCLUSION Ingested peanut protein is absorbed systemically and retains its immunoreactive capacity in human serum. However, the precise quantities and the implication for the elicitation of anaphylaxis remains to be elucidated.
Collapse
Affiliation(s)
- Anja Pahlow Mose
- Odense Research Center for Anaphylaxis (ORCA) Odense University Hospital Odense Denmark
- Department of Dermatology and Allergy Center Odense University Hospital Odense Denmark
| | | | - Per Stahl Skov
- Odense Research Center for Anaphylaxis (ORCA) Odense University Hospital Odense Denmark
- RefLab Aps. Copenhagen Denmark
| | - Charlotte Gotthard Mortz
- Odense Research Center for Anaphylaxis (ORCA) Odense University Hospital Odense Denmark
- Department of Dermatology and Allergy Center Odense University Hospital Odense Denmark
| | - Esben Eller
- Odense Research Center for Anaphylaxis (ORCA) Odense University Hospital Odense Denmark
- Department of Dermatology and Allergy Center Odense University Hospital Odense Denmark
| | - Ulrik Sprogøe
- Department of Clinical Immunology Odense University Hospital Odense Denmark
| | - Torben Barington
- Department of Clinical Immunology Odense University Hospital Odense Denmark
| | - Carsten Bindslev‐Jensen
- Odense Research Center for Anaphylaxis (ORCA) Odense University Hospital Odense Denmark
- Department of Dermatology and Allergy Center Odense University Hospital Odense Denmark
| |
Collapse
|
38
|
Sackesen C, Erman B, Gimenez G, Grishina G, Yilmaz O, Yavuz ST, Sahiner UM, Buyuktiryaki B, Yilmaz EA, Cavkaytar O, Sampson HA. IgE and IgG4 binding to lentil epitopes in children with red and green lentil allergy. Pediatr Allergy Immunol 2020; 31:158-166. [PMID: 31598994 DOI: 10.1111/pai.13136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/11/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The consumption of lentil is common in the Mediterranean area and is one of the causes of IgE-mediated food allergy in many countries. Len c 1 is a well-defined allergen of lentil and approximately 80% of the patients with lentil allergy recognize the purified Len c 1 protein. We sought to identify IgE and IgG4 sequential epitopes of Len c 1 in patients with red and/or green lentil allergy. We also aimed to determine IgE and IgG4 binding differences between those patients who had outgrown or remained reactive to lentil. METHODS Children with IgE-mediated lentil allergy were included in the study. We applied a microarray immunoassay to determine the characterization of positive IgE and IgG4 binding to Len c 1 epitopes in the patients' sera. RESULTS The peptides specifically recognized by IgE and IgG4 antibodies were mainly detected between peptides 107 and 135 of Len c 1. The signal intensities of positive epitopes were significantly greater in reactive patients than tolerant ones (P = .008 for IgE and P = .002 for IgG4). Moreover, IgE and IgG4 antibodies bound largely the same sequential epitopes in patients who remained reactive or outgrew their allergy. CONCLUSION IgG4-binding epitopes in lentil allergy were identified and IgE and IgG4 binding to epitopes in both red and green lentils was compared. Our data regarding signal intensity differences between reactive and outgrown patients and overlap binding of IgE and IgG4 antibodies may be important for the development of more accurate diagnostic tests and understanding of natural tolerance development.
Collapse
Affiliation(s)
- Cansin Sackesen
- Division of Pediatric Allergy, School of Medicine, Koc University, Istanbul, Turkey.,Division of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey.,Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baran Erman
- Division of Pediatric Allergy, School of Medicine, Koc University, Istanbul, Turkey.,Department of Molecular Biology and Genetics, Istinye University, Istanbul, Turkey
| | - Gustavo Gimenez
- Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Galina Grishina
- Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ozlem Yilmaz
- Division of Pediatric Allergy, School of Medicine, Koc University, Istanbul, Turkey
| | - Suleyman T Yavuz
- Division of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | - Umit M Sahiner
- Division of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | - Betul Buyuktiryaki
- Division of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ebru A Yilmaz
- Division of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | - Ozlem Cavkaytar
- Division of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | - Hugh A Sampson
- Division of Pediatric Allergy and Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
39
|
Abstract
Food allergies are a growing public health concern affecting approximately 8% of children and 10% of adults in the United States. Several immunotherapy approaches are under active investigation, including oral immunotherapy, epicutaneous immunotherapy, and sublingual immunotherapy. Each of these approaches uses a similar strategy of administering small, increasing amounts of allergen to the allergic subject. Immunologic studies have described changes in the T-cell compartment, serum and salivary immunoglobulin profile, and mast cell and basophil degranulation status in response to allergens. This review highlights the immunologic changes induced by food allergen-specific immunotherapy and discusses future directions in this field.
Collapse
Affiliation(s)
- Johanna M Smeekens
- UNC Department of Pediatrics, UNC Food Allergy Initiative, UNC Chapel Hill, 116 Manning Drive, Mary Ellen Jones Building, Room 3004, Chapel Hill, NC 27599, USA.
| | - Michael D Kulis
- UNC Department of Pediatrics, UNC Food Allergy Initiative, UNC Chapel Hill, 116 Manning Drive, Mary Ellen Jones Building, Room 3004, Chapel Hill, NC 27599, USA
| |
Collapse
|
40
|
Sánchez-Ruano L, de la Hoz B, Martínez-Botas J. Clinical utility of microarray B-cell epitope mapping in food allergies: A systematic review. Pediatr Allergy Immunol 2020; 31:175-185. [PMID: 31655013 DOI: 10.1111/pai.13141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Peptide microarray technology has been proposed as a useful tool for diagnosing food allergy. However, there is considerable heterogeneity in the clinical methods and analytical procedures used to assess its diagnostic and prognostic performance. We performed a systematic review of studies that have used B-cell epitopes by peptide microarray in food allergies to identify the clinical utility of this immunologic technique. METHODS Studies were screened in PubMed, Web of Science, and Embase according to an established keyword algorithm. Data extraction was performed, and information was collected in an Excel database. Descriptive analysis was carried out using Stata software. RESULTS Thirty relevant studies were identified. Most articles were cross-sectional (n = 24), included epitope mapping (n = 9), and assessed diagnostic utility (n = 11). All studies recruited allergic patients, and some included additional patients (sensitized, persistent, and tolerant). The primary microarray variables studied were IgE intensity (n = 29), IgG4 intensity (n = 15), and number of peptides (n = 17). Statistical approaches differed significantly between studies, with the Wilcoxon test being the most frequently used (n = 10). CONCLUSIONS Sensitization to particular epitopes of milk, peanut, and shrimp allergens can be used to determine clinical reactivity, persistence, severity, or response to oral immunotherapy; however, important methodological questions need to be addressed before drawing definitive conclusions. More research is needed to address the accuracy and clinical benefits of microarray-based technology. Standards are required to improve consistency and reproducibility, and to allow for better understanding of research findings.
Collapse
Affiliation(s)
- Laura Sánchez-Ruano
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Belén de la Hoz
- Servicio de Alergología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.,ARADyAL Network RD16/0006/0009, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain.,CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Ansotegui IJ, Melioli G, Canonica GW, Caraballo L, Villa E, Ebisawa M, Passalacqua G, Savi E, Ebo D, Gómez RM, Luengo Sánchez O, Oppenheimer JJ, Jensen-Jarolim E, Fischer DA, Haahtela T, Antila M, Bousquet JJ, Cardona V, Chiang WC, Demoly PM, DuBuske LM, Ferrer Puga M, Gerth van Wijk R, González Díaz SN, Gonzalez-Estrada A, Jares E, Kalpaklioğlu AF, Kase Tanno L, Kowalski ML, Ledford DK, Monge Ortega OP, Morais Almeida M, Pfaar O, Poulsen LK, Pawankar R, Renz HE, Romano AG, Rosário Filho NA, Rosenwasser L, Sánchez Borges MA, Scala E, Senna GE, Sisul JC, Tang ML, Thong BYH, Valenta R, Wood RA, Zuberbier T. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ J 2020; 13:100080. [PMID: 32128023 PMCID: PMC7044795 DOI: 10.1016/j.waojou.2019.100080] [Citation(s) in RCA: 285] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Currently, testing for immunoglobulin E (IgE) sensitization is the cornerstone of diagnostic evaluation in suspected allergic conditions. This review provides a thorough and updated critical appraisal of the most frequently used diagnostic tests, both in vivo and in vitro. It discusses skin tests, challenges, and serological and cellular in vitro tests, and provides an overview of indications, advantages and disadvantages of each in conditions such as respiratory, food, venom, drug, and occupational allergy. Skin prick testing remains the first line approach in most instances; the added value of serum specific IgE to whole allergen extracts or components, as well as the role of basophil activation tests, is evaluated. Unproven, non-validated, diagnostic tests are also discussed. Throughout the review, the reader must bear in mind the relevance of differentiating between sensitization and allergy; the latter entails not only allergic sensitization, but also clinically relevant symptoms triggered by the culprit allergen.
Collapse
Key Words
- AAAAI, American Academy of Allergy Asthma and Immunology
- ABA, Allergen Bead Array
- ACAAI, American College of Allergy Asthma and Immunology
- AEC, Allergen Exposure Chambers
- AIT, allergen immunotherapy
- AP, Alkaline Phosphatase
- AU/mL, Allergenic Units milliLiter
- Allergy
- Anti-IgE, Antibody against IgE
- BAT, Basophil Activation Test
- BAU/mL, Biologic Allergenic Units milliLiter
- CBA, Cytometric Bead Array
- CCD, Cross-reactive Carbohydrate Determinants
- CDER, Center for Drug Evaluation and Research (USA)
- CL, Chemiluminescence
- CaFE, Calibrated Fluorescence Enhancement
- DBPCFC, Double-Blind Placebo-Controlled Food Challenge
- Diagnostic strategies
- EAACI, European Academy of Allergy and Immunology
- EIA, Enzyme Immune Assay
- ELISA, Enzyme Linked Immuno Sorbent Analysis
- EMEA, European MEdicine Agencies
- ENPP-3, EctoNucleotide Pyrophosphatase/Phosphodiesterase 3
- FACS, Fluorescence-Activated Cell Sorting
- FDA, Food and Drug Administration (U.S. Department of Health and Human Services)
- FEIA, Fluorescent Enzyme Immunoassays
- FcεRI, High affinity IgE receptor
- H1, Histamine 1 receptor
- H2, Histamine 2 receptor
- HPO, Horseradish Peroxidase
- IDT, Intradermal Test
- ISAC, Immuno-Solid phase Allergen Chip
- IUIS, International Union of Immunological Societies
- IVD, in vitro diagnostic tool
- IgE
- IgE, immunoglobulin E
- In vitro tests
- LAMP-3, Lysosomal-Associated Membrane Protein
- MBAD, Molecule Based Allergy Diagnostics
- MRGPRX2, Mas-related G protein receptor 2
- NIH, National Institutes of Health (USA)
- NMBAs, NeuroMuscular Blocking Agents
- NPA, Negative Percent Agreement
- NSAIDs, Non-Steroidal Anti-Inflammatory Drugs
- PPA, Positive Percent Agreement
- PPT, Prick-Prick Test
- RAST, Radio Allergo Sorbent Test
- SCAR, severe cutaneous adverse drug reactions
- SPT, Skin prick test
- Skin tests
- kUA/L, kilo Units of Allergen/Liter for allergen-specific IgE antibody assays
- mAb, Monoclonal Antibody
- pNPP, p-Nitrophenylphosphate
- sIgE, specific IgE
- w/v, weight /volume
Collapse
Affiliation(s)
| | - Giovanni Melioli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Giorgio Walter Canonica
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Personalized Medicine, Asthma and Allergy, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Elisa Villa
- Azienda Sanitaria Locale di Vercelli, S.C. Pneumologia, Vercelli, Italia
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Kanagawa, Japan
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, Genoa, Italy
| | | | - Didier Ebo
- Department of Immunology - Allergology - Rheumatology, Antwerp University Hospital, Antwerp University, Department Immunology and Allergology, AZ Jan Palfijn Gent, Ghent, Belgium
| | | | - Olga Luengo Sánchez
- Allergy Section, Department of Internal Medicine, Vall d’Hebron University Hospital, Barcelona, Spain
| | | | - Erika Jensen-Jarolim
- Institute for Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - David A. Fischer
- Fischer Medicine Professional Corporation, Barrie, Ontario, Canada
| | - Tari Haahtela
- Skin and Allergy Hospital, University of Helsinki, Helsinki, Finland
| | | | - Jean J. Bousquet
- MACVIA-France, Montpellier, France
- INSERM, Villejuif, France
- Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France
- Euforea, Brussels, Belgium
- CHU Montpellier, France
| | - Victoria Cardona
- Universitat Autónoma de Barcelona, Hospital Universitario Vall d'Hebron, Servicio de Medicina Interna, Sección de Alergología, Barcelona, Spain
| | - Wen Chin Chiang
- Mount Elizabeth Medical Centre, Chiang Children's Allergy & Asthma Clinic, Singapore, Singapore
| | - Pascal M. Demoly
- University Hospital Montpellier, Montpellier, France
- Sorbonne Université, Paris, France
| | | | - Marta Ferrer Puga
- The Unidad de Educación Médica, Department of Medical Education, School of Medicine, Clinica Universitad de Navarra, Navarra, Spain
| | | | | | | | | | | | | | - Marek L. Kowalski
- Faculty of Medicine, Department of Clinical Immunology & Allergy, Medical University of Łódź, Łódź, Poland
| | | | | | | | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Lars K. Poulsen
- Gentofte University Hospital, Lab for Allergology, Allergy Clinic, Hellerup, Denmark
| | - Ruby Pawankar
- Nippon Medical School, Dept. of Otolaryngology, Tokyo, Japan
| | - Harald E. Renz
- University Hospital GI & MR GmbH, Institute of Laboratory Medicine & Pathology, Standort Marburg, Marburg, Germany
| | | | | | - Lanny Rosenwasser
- University of Missouri at Kansas City, School of Medicine, Kansas City, MO, USA
| | | | - Enrico Scala
- Experimental Allergy Unit, Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | - Mimi L.K. Tang
- Royal Children's Hospital, Department of Allergy & Immunology, Parkville, Victoria, Australia
| | - Bernard Yu-Hor Thong
- Tan Tock Seng Hospital, Deptartment of Rheumatology, Allergy & Immunology, Singapore, Singapore
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Robert A. Wood
- Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Torsten Zuberbier
- Campus Charite Mitte, Klinik fur Dermatologie & Allergologie, Berlin, Germany
| |
Collapse
|
42
|
Novel Bead-Based Epitope Assay is a sensitive and reliable tool for profiling epitope-specific antibody repertoire in food allergy. Sci Rep 2019; 9:18425. [PMID: 31804555 PMCID: PMC6895130 DOI: 10.1038/s41598-019-54868-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022] Open
Abstract
Identification of allergenic IgE epitopes is instrumental for the development of novel diagnostic and prognostic methods in food allergy. In this work, we present the quantification and validation of a Bead-Based Epitope Assay (BBEA) that through multiplexing of epitopes and multiple sample processing enables completion of large experiments in a short period of time, using minimal quantities of patients’ blood. Peptides that are uniquely coupled to beads are incubated with serum or plasma samples, and after a secondary fluorophore-labeled antibody is added, the level of fluorescence is quantified with a Luminex reader. The signal is then normalized and converted to epitope-specific antibody binding values. We show that the effect of technical artifacts, i.e. well position or reading order, is minimal; and batch effects - different individual microplate runs - can be easily estimated and eliminated from the data. Epitope-specific antibody binding quantified with BBEA is highly reliable, reproducible and has greater sensitivity of epitope detection compared to peptide microarrays. IgE directed at allergenic epitopes is a sensitive biomarker of food allergy and can be used to predict allergy severity and phenotypes; and quantification of the relationship between epitope-specific IgE and IgG4 can further improve our understanding of the immune mechanisms behind allergic sensitization.
Collapse
|
43
|
Dreskin SC, Germinaro M, Reinhold D, Chen X, Vickery BP, Kulis M, Burks AW, Negi SS, Braun W, Chambliss JM, Eglite S, McNulty CMG. IgE binding to linear epitopes of Ara h 2 in peanut allergic preschool children undergoing oral Immunotherapy. Pediatr Allergy Immunol 2019; 30:817-823. [PMID: 31437325 PMCID: PMC6906227 DOI: 10.1111/pai.13117] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/10/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND For patients with peanut allergy, there are currently no methods to predict who will develop sustained unresponsiveness (SU) after oral immunotherapy (OIT). OBJECTIVE Assess IgE binding to peanut (PN), Ara h 2, and specific linear epitopes of Ara h 2 as predictors of the important clinical parameters: eliciting dose threshold and attainment of SU following OIT. METHODS Samples and clinical data were collected from children undergoing OIT. PN- and Ara h 2-sIgE were quantified by ImmunoCAP® . IgE binding to linear peptides of Ara h 2 and Ara h 6 was measured with peptide microarrays. RESULTS Values of PN-sIgE correlated with eliciting dose (P = .001) and with a higher likelihood of achieving SU (P < .0001), but these relationships were lost at higher values for PN-sIgE (≥14 kIU for eliciting dose and ≥35 kIU/L for SU). In subjects with PN-sIgE ≥ 14 kIU/L, binding of IgE to epitopes 5 and 6 of Ara h 2 was associated with a lower eliciting dose at baseline challenge (P < .001; Pc < .02). In subjects with PN-sIgE ≥ 35 kIU/L, a combined model of IgE binding to epitopes 1, 5 and 6 with PN-sIgE was highly predictive of attainment of SU (AUC of 0.86; P = .0067). CONCLUSION In young patients with peanut allergy, measurement of PN-sIgE and IgE binding to specific linear epitopes of Ara h 2 in baseline samples may allow stratification of patients regarding sensitivity to challenge and outcome of OIT.
Collapse
Affiliation(s)
- Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| | | | | | - Xueni Chen
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| | - Brian P Vickery
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Kulis
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina-Chapel Hill, NC, USA
| | - A Wesley Burks
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina-Chapel Hill, NC, USA
| | - Surendra S Negi
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Werner Braun
- Sealy Center for Structural Biology and Molecular Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Jeffery M Chambliss
- Division of Allergy and Immunology, Department of Pediatrics, University of Texas, Dallas, TX, USA
| | - Spodra Eglite
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| | | |
Collapse
|
44
|
Ehlers AM, Klinge M, Suer W, Weimann Y, Knulst AC, Besa F, Le TM, Otten HG. Ara h 7 isoforms share many linear epitopes: Are 3D epitopes crucial to elucidate divergent abilities? Clin Exp Allergy 2019; 49:1512-1519. [PMID: 31520442 PMCID: PMC6900131 DOI: 10.1111/cea.13496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Background The peanut allergens Ara h 2, h 6, and h 7 are potent allergens and can trigger severe reactions. Ara h 7 consists of three isoforms differing in their ability to induce basophil degranulation, whereas the ability of Ara h 7.0201 is comparable to Ara h 2 and 6 as shown in previous literature. Objective To identify linear epitopes of Ara h 7.0101, Ara h 7.0201 and Ara h 7.0301 recognized by IgE and IgG4 from patients sensitized to Ara h 7 and to investigate their potential to elucidate divergent abilities of the Ara h 7 isoforms in inducing basophil activation. Methods Linear epitopes recognized by IgE and IgG4 were mapped by peptide microarray analysis containing 15‐mer peptides of Ara h 2.0201, 6, 7.0101, 7.0201 and 7.0301 and 39 peanut allergic patients sensitized to Ara h 7 (discovery). For validation, 20‐mer peptides containing the minimal epitope and surrounding amino acids were incubated with 25 sensitized patients and 10 controls (validation). Results Three out of 14 linear epitopes were unique for each isoform (Ara h 7.0101: aa 97‐109; Ara h 7.0201: aa 122‐133; Ara h 7.0301: aa 65‐74) but scarcely recognized by IgE. The main linear IgE epitope (aa 51‐57) located in the long flexible loop of all Ara h 7 isoforms was bound by antibodies from 31% of the patients (discovery and validation cohort). Regarding IgG4, 55% of the patients recognized an epitope present on all isoforms (aa 55‐65), whereas epitope aa 129‐137, only present on Ara h 7.0101/0.0301, was recognized by 38% of the patients. Recognition was highly individual, although 20% of the patients recognized any linear epitope neither by IgE nor by IgG4 despite a low mean z‐score of ≥ 1.7. Remarkably, only 50% of the patients recognized one or more epitopes by IgE. Conclusion & Clinical Relevance Ara h 7 isoforms share many linear epitopes being easily accessible for antibody binding. Unique epitopes, essential to elucidate divergent potencies, were scarcely recognized, suggesting a crucial involvement of conformational epitopes.
Collapse
Affiliation(s)
- Anna M Ehlers
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | | | - André C Knulst
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Thuy-My Le
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Department of Dermatology and Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Henny G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
45
|
Callery EL, Keymer C, Barnes NA, Rowbottom AW. Component-resolved diagnostics in the clinical and laboratory investigation of allergy. Ann Clin Biochem 2019; 57:26-35. [PMID: 31480853 DOI: 10.1177/0004563219877434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The diagnosis and management of allergy is complex; the clinical symptoms associated with allergic reactions span a broad spectrum of severity, from mild hay fever-type symptoms through to life-threatening anaphylaxis. Obtaining an allergy-focused clinical history is therefore vital for identifying possible allergic triggers and directing testing. However, this focus could be changing as scientific and technological advances have paved the way for developments within in vitro testing for allergy. With knowledge of allergens at the molecular level expanding, there are now the facilities to characterize the sensitization profiles of allergy sufferers and determine the specific molecules (or components) against which the allergen-inducing immunoglobulin type E proteins have been produced. This technology is termed component-resolved diagnostics. We know that accurate identification of immunoglobulin type E specificity, the source of the causative allergen, and knowledge of potential allergic cross-reactivities are required for optimal clinical management of allergy patients. These factors can make allergy a diagnostic challenge outside of a specialist centre, and contribute to the difficulties associated with requesting and interpreting allergy tests. The incorporation of component-resolved diagnostics into current practice has provided a platform for patient-tailored risk stratification and improved the application of allergen-specific immunotherapy, revolutionizing specialist management of these patients. This review discusses the roles of each type of testing in allergy management and predictions for future pathways.
Collapse
Affiliation(s)
- Emma L Callery
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
| | - Catherine Keymer
- Department of Immunology, Royal Liverpool University Hospital, Liverpool, UK
| | - Nicholas A Barnes
- Faculty of Biology Medicine and Health, Manchester Academy for Healthcare Scientist Education, The University of Manchester, Manchester, UK
| | - Anthony W Rowbottom
- Department of Immunology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK.,School of Medicine, University of Central Lancashire, Preston, UK
| |
Collapse
|
46
|
Shah F, Shi A, Ashley J, Kronfel C, Wang Q, Maleki SJ, Adhikari B, Zhang J. Peanut Allergy: Characteristics and Approaches for Mitigation. Compr Rev Food Sci Food Saf 2019; 18:1361-1387. [DOI: 10.1111/1541-4337.12472] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Faisal Shah
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Aimin Shi
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Jon Ashley
- International Iberian Nanotechnology LaboratoryFood Quality and Safety Research group Berga 4715‐330 Portugal
| | - Christina Kronfel
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Qiang Wang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| | - Soheila J. Maleki
- Food Processing and Sensory Quality ResearchUnited States Dept. of Agriculture New Orleans LA 70124 USA
| | - Benu Adhikari
- School of ScienceRMIT Univ. Melbourne VIC 3083 Australia
| | - Jinchuang Zhang
- Inst. of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key research Laboratory of Agro‐Products ProcessingMinistry of Agriculture Beijing 100193 P. R. China
| |
Collapse
|
47
|
Pang SL, Ho KL, Waterman J, Rambo RP, Teh AH, Mathavan I, Harris G, Beis K, Say YH, Anusha MS, Sio YY, Chew FT, Ng CL. Crystal structure and epitope analysis of house dust mite allergen Der f 21. Sci Rep 2019; 9:4933. [PMID: 30894561 PMCID: PMC6426935 DOI: 10.1038/s41598-019-40879-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/25/2019] [Indexed: 01/07/2023] Open
Abstract
Group 21 and 5 allergens are homologous house dust mite proteins known as mid-tier allergens. To reveal the biological function of group 21 allergens and to understand better the allergenicity of the rDer f 21 allergen, we determined the 1.5 Å crystal structure of rDer f 21 allergen from Dermatophagoides farinae. The rDer f 21 protein consists of a three helical bundle, similar to available structures of group 21 and homologous group 5 allergens. The rDer f 21 dimer forms a hydrophobic binding pocket similar to the one in the Der p 5 allergen, which indicates that both of the homologous groups could share a similar function. By performing structure-guided mutagenesis, we mutated all 38 surface-exposed polar residues of the rDer f 21 allergen and carried out immuno-dot blot assays using 24 atopic sera. Six residues, K10, K26, K42, E43, K46, and K48, which are located in the region between the N-terminus and the loop 1 of rDer f 21 were identified as the major IgE epitopes of rDer f 21. Epitope mapping of all potential IgE epitopes on the surface of the rDer f 21 crystal structure revealed heterogeneity in the sIgE recognition of the allergen epitopes in atopic individuals. The higher the allergen-sIgE level of an individual, the higher the number of epitope residues that are found in the allergen. The results illustrate the clear correlation between the number of specific major epitope residues in an allergen and the sIgE level of the atopic population.
Collapse
Affiliation(s)
- Sze Lei Pang
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Jitka Waterman
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Robert Paul Rambo
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Indran Mathavan
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, United Kingdom
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, United Kingdom
| | - Konstantinos Beis
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, United Kingdom
| | - Yee-How Say
- Department of Biomedical Science, Faculty of Science, Universiti Tunku Abdul Rahman (UTAR) Perak Campus, 31900 Kampar, Perak, Malaysia
| | - Matta Sri Anusha
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore, Singapore
| | - Yang Yie Sio
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore, Singapore
| | - Fook Tim Chew
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore, Singapore.
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
48
|
Plundrich NJ, Cook BT, Maleki SJ, Fourches D, Lila MA. Binding of peanut allergen Ara h 2 with Vaccinium fruit polyphenols. Food Chem 2019; 284:287-295. [PMID: 30744860 DOI: 10.1016/j.foodchem.2019.01.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
Abstract
The potential for 42 different polyphenols found in Vaccinium fruits to bind to peanut allergen Ara h 2 and inhibit IgE binding epitopes was investigated using cheminformatics techniques. Out of 12 predicted binders, delphinidin-3-glucoside, cyanidin-3-glucoside, procyanidin C1, and chlorogenic acid were further evaluated in vitro. Circular dichroism, UV-Vis spectroscopy, and immunoblotting determined their capacity to (i) bind to Ara h 2, (ii) induce protein secondary structural changes, and (iii) inhibit IgE binding epitopes. UV-Vis spectroscopy clearly indicated that procyanidin C1 and chlorogenic acid interacted with Ara h 2, and circular dichroism results suggested that interactions with these polyphenols resulted in changes to Ara h 2 secondary structures. Immunoblotting showed that procyanidin C1 and chlorogenic acid bound to Ara h 2 significantly decreased the IgE binding capacity by 37% and 50%, respectively. These results suggest that certain polyphenols can inhibit IgE recognition of Ara h 2 by obstructing linear IgE epitopes.
Collapse
Affiliation(s)
- Nathalie J Plundrich
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Bethany T Cook
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Soheila J Maleki
- United States Department of Agriculture-Agricultural Research Service-Southern Regional Research Center, New Orleans, LA 70124, USA
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Mary Ann Lila
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA.
| |
Collapse
|
49
|
Baker MG, Sampson HA. Phenotypes and endotypes of food allergy: A path to better understanding the pathogenesis and prognosis of food allergy. Ann Allergy Asthma Immunol 2018; 120:245-253. [PMID: 29378246 DOI: 10.1016/j.anai.2018.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Mary Grace Baker
- Division of Allergy and Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hugh A Sampson
- Division of Allergy and Immunology, Department of Pediatrics, Elliot and Roslyn Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
50
|
Datema MR, Eller E, Zwinderman AH, Poulsen LK, Versteeg SA, van Ree R, Bindslev-Jensen C. Ratios of specific IgG 4 over IgE antibodies do not improve prediction of peanut allergy nor of its severity compared to specific IgE alone. Clin Exp Allergy 2018; 49:216-226. [PMID: 30269403 PMCID: PMC7379576 DOI: 10.1111/cea.13286] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/15/2018] [Accepted: 08/01/2018] [Indexed: 01/04/2023]
Abstract
Background IgG4 antibodies have been suggested to play a protective role in the translation of peanut sensitization into peanut allergy. Whether they have added value as diagnostic read‐out has not yet been reported. Objective To evaluate whether (a) peanut‐specific IgG, IgG4 and/or IgA antibodies are associated with tolerance and/or less severe reactions and (b) they can improve IgE‐based diagnostic tests. Methods Sera of 137 patients with challenge‐proven peanut allergy and of 25 subjects that tolerated peanut, both with known IgE profiles to peanut extract and five individual peanut allergens, were analyzed for specific IgG and IgG4. Antibody levels and ratios thereof were associated with challenge outcome including symptom severity grades. For comparison of the discriminative performance, receiver operating characteristic curve (ROC) analysis was used. Results IgE against Ara h 2 was significantly higher in allergic than in tolerant patients and associated with severity of reactions (P < 0.001) with substantial diagnostic capability (AUC 0.91, 95%CI 0.87‐0.96 and 0.80, 95%CI 0.73‐0.87, respectively). IgG and IgG4 were also positively associated albeit significantly weaker (AUCs from 0.65 to 0.72). On the other hand, ratios of IgG and IgG4 over IgE were greater in patients that were tolerant or had mild symptoms as compared to severe patients but they did not predict challenge outcomes better than IgE alone (AUCs from 0.54 to 0.89). Conclusion IgE against Ara h 2 is the best biomarker for predicting peanut challenge outcomes including severity and IgG and IgG4 antibody ratios over IgE do not improve these outcomes.
Collapse
Affiliation(s)
- Mareen R Datema
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands.,Department of Clinical Epidemiology, Academic Medical Centre, Biostatistics and Bioinformatics, Amsterdam, the Netherlands
| | - Esben Eller
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University Hospital, Odense, Denmark
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Academic Medical Centre, Biostatistics and Bioinformatics, Amsterdam, the Netherlands
| | - Lars K Poulsen
- Allergy Clinic, Copenhagen University Hospital at Gentofte, Copenhagen, Denmark
| | - Serge A Versteeg
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, the Netherlands.,Department of Otorhinolaryngology, Academic Medical Center, Amsterdam, the Netherlands
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University Hospital, Odense, Denmark
| |
Collapse
|